Bivariate modelling of precipitation and temperature using a non-homogeneous hidden Markov model


Abstract in English

Aiming to generate realistic synthetic times series of the bivariate process of daily mean temperature and precipitations, we introduce a non-homogeneous hidden Markov model. The non-homogeneity lies in periodic transition probabilities between the hidden states, and time-dependent emission distributions. This enables the model to account for the non-stationary behaviour of weather variables. By carefully choosing the emission distributions, it is also possible to model the dependance structure between the two variables. The model is applied to several weather stations in Europe with various climates, and we show that it is able to simulate realistic bivariate time series.

Download