We apply our recently proposed quadratic genetic modification approach to generating and testing the effects of alternative mass accretion histories for a single $Lambda$CDM halo. The goal of the technique is to construct different formation histories, varying the overall contribution of mergers to the fixed final mass. This enables targeted studies of galaxy and dark matter halo formations sensitivity to the smoothness of mass accretion. Here, we focus on two dark matter haloes, each with four different mass accretion histories. We find that the concentration of both haloes systematically decreases as their merger history becomes smoother. This causal trend tracks the known correlation between formation time and concentration parameters in the overall halo population. At fixed formation time, we further establish that halo concentrations are sensitive to the order in which mergers happen. This ability to study an individual halos response to variations in its history is highly complementary to traditional methods based on emergent correlations from an extended halo population.