Do you want to publish a course? Click here

Instability of Rotationally Tuned Dipolar Bose-Einstein Condensates

349   0   0.0 ( 0 )
 Added by Srivatsa B. Prasad
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The possibility of effectively inverting the sign of the dipole-dipole interaction, by fast rotation of the dipole polarization, is examined within a harmonically trapped dipolar Bose-Einstein condensate. Our analysis is based on the stationary states in the Thomas-Fermi limit, in the corotating frame, as well as direct numerical simulations in the Thomas-Fermi regime, explicitly accounting for the rotating polarization. The condensate is found to be inherently unstable due to the dynamical instability of collective modes. This ultimately prevents the realization of robust and long-lived rotationally tuned states. Our findings have major implications for experimentally accessing this regime.



rate research

Read More

We investigate dipolar Bose-Einstein condensates in a complex external double-well potential that features a combined parity and time-reversal symmetry. On the basis of the Gross-Pitaevskii equation we study the effects of the long-ranged anisotropic dipole-dipole interaction on ground and excited states by the use of a time-dependent variational approach. We show that the property of a similar non-dipolar condensate to possess real energy eigenvalues in certain parameter ranges is preserved despite the inclusion of this nonlinear interaction. Furthermore, we present states that break the PT symmetry and investigate the stability of the distinct stationary solutions. In our dynamical simulations we reveal a complex stabilization mechanism for PT-symmetric, as well as for PT-broken states which are, in principle, unstable with respect to small perturbations.
A toolbox for the quantum simulation of polarons in ultracold atoms is presented. Motivated by the impressive experimental advances in the area of ultracold atomic mixtures, we theoretically study the problem of ultracold atomic impurities immersed in a Bose-Einstein condensate mixture (BEC). The coupling between impurity and BEC gives rise to the formation of polarons whose mutual interaction can be effectively tuned using an external laser driving a quasi-resonant Raman transition between the BEC components. Our scheme allows one to change the effective interactions between polarons in different sites from attractive to zero. This is achieved by simply changing the intensity and the frequency of the two lasers. Such arrangement opens new avenues for the study of strongly correlated condensed matter models in ultracold gases.
We numerically study the breathing dynamics induced by collision between bright solitons in the one-dimensional Bose-Einstein condensates with strong dipole-dipole interaction. This breathing phenomenon is closely related to the after-collision short-lived attraction of solitons induced by the dipolar effect. The initial phase difference of solitons leads to the asymmetric dynamics after collision, which is manifested on their different breathing amplitude, breathing frequency, and atom number. We clarify that the asymmetry of breathing frequency is directly induced by the asymmetric atom number, rather than initial phase difference. Moreover, the collision between breathing solitons can produce new after-two-collision breathing solitons, whose breathing amplitude can be adjusted and reach the maximum (or minimum) when the peak-peak (or dip-dip) collision happens.
It is shown that the distinct oscillations of the purity of the single-particle density matrix for many-body open quantum systems with balanced gain and loss reported by Dast et al. [Phys. Rev. A 93, 033617 (2016)] can also be found in closed quantum systems of which subsystems experience a gain and loss of particles. This is demonstrated with two different lattice setups for cold atoms, viz. a ring of six lattice sites with periodic boundary conditions and a linear chain of four lattice wells. In both cases pronounced purity oscillations are found, and it is shown that they can be made experimentally accessible via the average contrast in interference experiments.
Two component (spinor) Bose-Einstein condensates (BECs) are considered as the nodes of an interconnected quantum network. Unlike standard single-system qubits, in a BEC the quantum information is duplicated in a large number of identical bosonic particles, thus can be considered to be a macroscopic qubit. One of the difficulties with such a system is how to effectively interact such qubits together in order to transfer quantum information and create entanglement. Here we propose a scheme of cavities containing spinor BECs coupled by optical fiber in order to achieve this task. We discuss entanglement generation and quantum state transfer between nodes using such macroscopic BEC qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا