No Arabic abstract
Nonreciprocal devices effectively mimic the breaking of time-reversal symmetry for the subspace of dynamical variables that they couple, and can be used to create chiral information processing networks. We study the systematic inclusion of ideal gyrators and circulators into Lagrangian and Hamiltonian descriptions of lumped-element electrical networks. The proposed theory is of wide applicability in general nonreciprocal networks on the quantum regime. We apply it to pedagogical and pathological examples of circuits containing Josephson junctions and ideal nonreciprocal elements described by admittance matrices, and compare it with the more involved treatment of circuits based on nonreciprocal devices characterized by impedance or scattering matrices. Finally, we discuss the dual quantization of circuits containing phase-slip junctions and nonreciprocal devices.
We develop a systematic procedure to quantize canonically Hamiltonians of light-matter models of transmission lines coupled through lumped linear lossless ideal nonreciprocal elements, that break time-reversal symmetry, in a circuit QED set-up. This is achieved through a description of the distributed subsystems in terms of both flux and charge fields. We prove that this apparent redundancy is required for the general derivation of the Hamiltonian for a wider class of networks. By making use of the electromagnetic duality symmetry in 1+1 dimensions, we provide unambiguous identification of the physical degrees of freedom, separating out the nondynamical parts. This doubled description can also treat the case of other extended lumped interactions in a regular manner that presents no spurious divergences, as we show explicitly in the example of a circulator connected to a Josephson junction through a transmission line. This theory enhances the quantum engineering toolbox to design complex networks with nonreciprocal elements.
Correlations are important tools in the characterization of quantum fields. They can be used to describe statistical properties of the fields, such as bunching and anti-bunching, as well as to perform field state tomography. Here we analyse experiments by Bozyigit et al. [arXiv:1002.3738] where correlation functions can be observed using the measurement records of linear detectors (i.e. quadrature measurements), instead of relying on intensity or number detectors. We also describe how large amplitude noise introduced by these detectors can be quantified and subtracted from the data. This enables, in particular, the observation of first- and second-order coherence functions of microwave photon fields generated using circuit quantum-electrodynamics and propagating in superconducting transmission lines under the condition that noise is sufficiently low.
Superconducting circuits have become a leading quantum technology for testing fundamentals of quantum mechanics and for the implementation of advanced quantum information protocols. In this chapter, we revise the basic concepts of circuit network theory and circuit quantum electrodynamics for the sake of digital and analog quantum simulations of quantum field theories, relativistic quantum mechanics, and many-body physics, involving fermions and bosons. Based on recent improvements in scalability, controllability, and measurement, superconducting circuits can be considered as a promising quantum platform for building scalable digital and analog quantum simulators, enjoying unique and distinctive properties when compared to other advanced platforms as trapped ions, quantum photonics and optical lattices.
This article is a tutorial on the quantum treatment of superconducting electrical circuits. It is intended for new researchers with limited or no experience with the field, but should be accessible to anyone with a bachelors degree in physics or similar. The tutorial has three parts. The first part introduces the basic methods used in quantum circuit analysis, starting from a circuit diagram and ending with a quantized Hamiltonian truncated to the lowest levels. The second part introduces more advanced methods supplementing the methods presented in the first part. The third part is a collection of worked examples of superconducting circuits. Besides the examples in the third part, the two first parts also includes examples in parallel with the introduction of the methods.
Significant advances in coherence have made superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by qubits, while maintaining superior coherence. We demonstrate a novel superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for near-millisecond storage of quantum states in a resonator while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. The observed coherence times constitute an improvement of almost an order of magnitude over those of the best available superconducting qubits. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing with Josephson junction-based quantum circuits.