The polytropic index of solar coronal plasma in sunspot fan loops and its temperature dependence


Abstract in English

Observations of slow magneto-acoustic waves have been demonstrated to possess a number of applications in coronal seismology. Determination of the polytropic index ($gamma$) is one such important application. Analysing the amplitudes of oscillations in temperature and density corresponding to a slow magneto-acoustic wave, the polytropic index in the solar corona has been calculated and based on the obtained value it has been inferred that thermal conduction is highly suppressed in a very hot loop in contrast to an earlier report of high thermal conduction in a relatively colder loop. In this study, using SDO/AIA data, we analysed slow magneto-acoustic waves propagating along sunspot fan loops from 30 different active regions and computed polytropic indices for several loops at multiple spatial positions. The obtained $gamma$ values vary from 1.04$pm$0.01 to 1.58$pm$0.12 and most importantly display a temperature dependence indicating higher $gamma$ at hotter temperatures. This behaviour brings both the previous studies to agreement and perhaps implies a gradual suppression of thermal conduction with increase in temperature of the loop. The observed phase shifts between temperature and density oscillations, however, are substantially larger than that expected from a classical thermal conduction and appear to be influenced by a line-of-sight integration effect on the emission measure.

Download