No Arabic abstract
We report on an extensive study of the elastic scattering time $tauS$ of matter-waves in optical disordered potentials. Using direct experimental measurements, numerical simulations and comparison with first-order Born approximation based on the knowledge of the disorder properties, we explore the behavior of $tauS$ over more than three orders of magnitude, spanning from the weak to the strong scattering regime. We study in detail the location of the crossover and, as a main result, we reveal the strong influence of the disorder statistics, especially on the relevance of the widely used Ioffe-Regel-like criterion $klSsim 1$. While it is found to be relevant for Gaussian-distributed disordered potentials, we observe significant deviations for laser speckle disorders that are commonly used with ultracold atoms. Our results are crucial for connecting experimental investigation of complex transport phenomena, such as Anderson localization, to microscopic theories.
We study the elastic scattering time $tau_mathrm{s}$ of ultracold atoms propagating in optical disordered potentials in the strong scattering regime, going beyond the recent work of J. Richard emph{et al.} textit{Phys. Rev. Lett.} textbf{122} 100403 (2019). There, we identified the crossover between the weak and the strong scattering regimes by comparing direct measurements and numerical simulations to the first order Born approximation. Here we focus specifically on the strong scattering regime, where the first order Born approximation is not valid anymore and the scattering time is strongly influenced by the nature of the disorder. To interpret our observations, we connect the scattering time $tau_mathrm{s}$ to the profiles of the spectral functions that we estimate using higher order Born perturbation theory or self-consistent Born approximation. The comparison reveals that self-consistent methods are well suited to describe $tau_mathrm{s}$ for Gaussian-distributed disorder, but fails for laser speckle disorder. For the latter, we show that the peculiar profiles of the spectral functions, as measured independently in V. Volchkov emph{et al.} textit{Phys. Rev. Lett.} textbf{120}, 060404 (2018), must be taken into account. Altogether our study characterizes the validity range of usual theoretical methods to predict the elastic scattering time of matter waves, which is essential for future close comparison between theory and experiments, for instance regarding the ongoing studies on Anderson localization.
We show that, in contrast to immediate intuition, Anderson localization of noninteracting particles induced by a disordered potential in free space can increase (i.e., the localization length can decrease) when the particle energy increases, for appropriately tailored disorder correlations. We predict the effect in one, two, and three dimensions, and propose a simple method to observe it using ultracold atoms placed in optical disorder. The increase of localization with the particle energy can serve to discriminate quantum versus classical localization.
We study the non-equilibrium dynamics of cold atoms held in an optical lattice potential. The expansion of an initially confined atom cloud occurs in two phases: an initial quadratic expansion followed by a ballistic behaviour at long times. Accounting for this gives a good description of recent experimental results, and provides a robust method to extract the effective intersite tunneling from time-of-flight measurements.
Disorder can profoundly affect the transport properties of a wide range of quantum materials. Presently, there is significant disagreement regarding the effect of disorder on transport in the disordered Bose-Hubbard (DBH) model, which is the paradigm used to theoretically study disorder in strongly correlated bosonic systems. We experimentally realize the DBH model by using optical speckle to introduce precisely known, controllable, and fine-grained disorder to an optical lattice5. Here, by measuring the dissipation strength for transport, we discover a disorder-induced SF-to-insulator (IN) transition in this system, but we find no evidence for an IN-to-SF transition. Emergence of the IN at disorder strengths several hundred times the tunnelling energy agrees with a predicted SF--Bose glass (BG) transition from recent quantum Monte Carlo (QMC) work. Both the SF--IN transition and correlated changes in the atomic quasimomentum distribution--which verify a simple model for the interplay of disorder and interactions in this system--are phenomena new to the unit filling regime explored in this work, compared with the high filling limit probed previously. We find that increasing disorder strength generically leads to greater dissipation in the regime of mixed SF and Mott-insulator (MI) phases, excluding predictions of a disorder-induced, or re-entrant, SF (RSF). While the absence of an RSF may be explained by the effect of finite temperature, we strongly constrain theories by measuring bounds on the entropy per particle in the disordered lattice.
One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson localization, and the realization of the disordered Bose-Hubbard model. There are however still questions as to how to differentiate the complex insulating phases resulting from this interplay, and how to measure the size of the superfluid fragments that these phases entail. It has been suggested that the correlation function of such a system can give new insights, but so far little experimental investigation has been performed. Here, we show the first experimental analysis of the correlation function for a weakly interacting, bosonic system in a quasiperiodic lattice. We observe an increase in the correlation length as well as a change in shape of the correlation function in the delocalization crossover from Anderson glass to coherent, extended state. In between, the experiment indicates the formation of progressively larger coherent fragments, consistent with a fragmented BEC, or Bose glass.