We present the results of broadband dielectric spectroscopy of GaMo$_4$S$_8$, a lacunar spinel system that recently was shown to exhibit non-canonical, orbitally-driven ferroelectricity. Our study reveals complex relaxation dynamics of this multiferroic material, both above and below its Jahn-Teller transition at T$_{textrm{JT}}=47$ K. Above T$_{textrm{JT}}$, two types of coupled dipolar-orbital dynamics seem to compete: relaxations within cluster-like regions with short-range polar order like in relaxor ferroelectrics and critical fluctuations of only weakly interacting dipoles, the latter resembling the typical dynamics of order-disorder type ferroelectrics. Below the Jahn-Teller transition, the onset of orbital order drives the system into long-range ferroelectric order and dipolar dynamics within the ferroelectric domains is observed. The coupled dipolar and orbital relaxation behavior of GaMo$_4$S$_8$ above the Jahn-Teller transition markedly differs from that of the skyrmion host GaV$_4$S$_8$, which seems to be linked to differences in the structural distortions of the two systems on the unit-cell level.