Do you want to publish a course? Click here

ALMA Reveals a Misaligned Inner Gas Disk inside the Large Cavity of a Transitional Disk

107   0   0.0 ( 0 )
 Added by Satoshi Mayama
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Pairs of azimuthal intensity decrements at near symmetric locations have been seen in a number of protoplanetary disks. They are most commonly interpreted as the two shadows cast by a highly misaligned inner disk. Direct evidence of such an inner disk, however, remain largely illusive, except in rare cases. In 2012, a pair of such shadows were discovered in scattered light observations of the near face-on disk around 2MASS J16042165-2130284, a transitional object with a cavity $sim$60 AU in radius. The star itself is a `dipper, with quasi-periodic dimming events on its light curve, commonly hypothesized as caused by extinctions by transiting dusty structures in the inner disk. Here, we report the detection of a gas disk inside the cavity using ALMA observations with $sim0$farcs2 angular resolution. A twisted butterfly pattern is found in the moment 1 map of CO (3-2) emission line towards the center, which is the key signature of a high misalignment between the inner and outer disks. In addition, the counterparts of the shadows are seen in both dust continuum emission and gas emission maps, consistent with these regions being cooler than their surroundings. Our findings strongly support the hypothesized misaligned-inner-disk origin of the shadows in the J1604-2130 disk. Finally, the inclination of inner disk would be close to -45 $^{circ}$ in contrast with 45 $^{circ}$; it is possible that its internal asymmetric structures cause the variations on the light curve of the host star.



rate research

Read More

While planet formation is thought to occur early in the history of a protoplanetary disk, the presence of planets embedded in disks, or of other processes driving disk evolution, might be traced from their imprints on the disk structure. We observed the T Tauri star HD 143006, located in the 5-11 Myr-old Upper Sco region, in polarized scattered light with VLT/SPHERE at near-infrared wavelengths, reaching an angular resolution of ~0.037 (~6 au). We obtained two datasets, one with a 145 mas diameter coronagraph, and the other without, enabling us to probe the disk structure down to an angular separation of ~0.06 (~10 au). In our observations, the disk of HD 143006 is clearly resolved up to ~0.5 and shows a clear large-scale asymmetry with the eastern side brighter than the western side. We detect a number of additional features, including two gaps and a ring. The ring shows an overbrightness at a position angle (PA) of ~140 deg, extending over a range in position angle of ~60 deg, and two narrow dark regions. The two narrow dark lanes and the overall large-scale asymmetry are indicative of shadowing effects, likely due to a misaligned inner disk. We demonstrate the remarkable resemblance between the scattered light image of HD 143006 and a model prediction of a warped disk due to an inclined binary companion. The warped disk model, based on the hydrodynamic simulations combined with 3D radiative transfer calculations, reproduces all major morphological features. However, it does not account for the observed overbrightness at PA~140 deg. Shadows have been detected in several protoplanetary disks, suggesting that misalignment in disks is not uncommon. However, the origin of the misalignment is not clear. As-yet-undetected stellar or massive planetary companions could be responsible for them, and naturally account for the presence of depleted inner cavities.
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of a protoplanetary disk around the T Tauri star Sz~84 and analyses of the structures of the inner cavity in the central region of the dust disk. Sz~84s spectral energy distribution (SED) has been known to exhibit negligible infrared excess at $lambda lesssim$10~$mu$m due to the disks cavity structure. Analyses of the observed visibilities of dust continuum at 1.3~mm and the SED indicate that the size of the cavity in the disk of large (millimeter size) dust grains is 8~au in radius and that in the disk of small (sub-micron size) dust grains is 60~au in radius. Furthermore, from the SED analyses, we estimate that the upper limit mass of small dust grains at $r<$60~au is less than $sim$10$^{-3}$~$M_{rm earth}$, which is $lesssim$0.01~% of the total (small~$+$~large) dust mass at $r<$60~au. These results suggest that large dust grains are dominant at $r<$60~au, implying that dust grains efficiently grow with less efficient fragmentation in this region, potentially due to weak turbulence and/or stickier dust grains. The balance of grain growth and dust fragmentation is an important factor for determining the size of large dust grains in protoplanetary disks, and thus Sz~84 could serve as a good testbed for investigations of grain growth in such disks.
We present high-contrast H-band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2-m Telescope and HiCIAO. An angular resolution and an inner working angle of 0.07 and r~0.05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18+/-2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 3-4M_Jup planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST/NICMOS, and this difference may indicate the grain growth process in the disk.
Hydrodynamical simulations of planet-disk interactions suggest that planets may be responsible for a number of the sub-structures frequently observed in disks in both scattered light and dust thermal emission. Despite the ubiquity of these features, direct evidence of planets embedded in disks and of the specific interaction features like spiral arms within planetary gaps still remain rare. In this study we discuss recent observational results in the context of hydrodynamical simulations in order to infer the properties of a putative embedded planet in the cavity of a transition disk. We imaged the transition disk SR 21 in H-band in scattered light with SPHERE/IRDIS and in thermal dust emission with ALMA band 3 (3mm) observations at a spatial resolution of 0.1. We combine these datasets with existing band 9 (430um) and band 7 (870um) ALMA continuum data. The Band 3 continuum data reveals a large cavity and a bright ring peaking at 53 au strongly suggestive of dust trapping.The ring shows a pronounced azimuthal asymmetry, with a bright region in the north-west that we interpret as a dust over-density. A similarly-asymmetric ring is revealed at the same location in polarized scattered light, in addition to a set of bright spirals inside the mm cavity and a fainter spiral bridging the gap to the outer ring. These features are consistent with a number of previous hydrodynamical models of planet-disk interactions, and suggest the presence of a ~1 MJup planet at 44 au and PA=11{deg}. This makes SR21 the first disk showing spiral arms inside the mm cavity, as well as one for which the location of a putative planet can be precisely inferred. With the location of a possible planet being well-constrained by observations, it is an ideal candidate for follow-up observations to search for direct evidence of a planetary companion still embedded in its disk.
The disk around AB Aur was imaged and resolved at 24.6,$mu$m using the Cooled Mid-Infrared Camera and Spectrometer on the 8.2m Subaru Telescope. The gaussian full-width at half-maximum of the source size is estimated to be 90 $pm$ 6 AU, indicating that the disk extends further out at 24.6,$mu$m than at shorter wavelengths. In order to interpret the extended 24.6,$mu$m image, we consider a disk with a reduced surface density within a boundary radius $R_c$, which is motivated by radio observations that suggest a reduced inner region within about 100 AU from the star. Introducing the surface density reduction factor $f_c$ for the inner disk, we determine that the best match with the observed radial intensity profile at 24.6,$mu$m is achieved with $R_c$=88 AU and $f_c$=0.01. We suggest that the extended emission at 24.6,$mu$m is due to the enhanced emission from a wall-like structure at the boundary radius (the inner edge of the outer disk), which is caused by a jump in the surface density at $R_c$. Such reduced inner disk and geometrically thick outer disk structure can also explain the more point-like nature at shorter wavelengths. We also note that this disk geometry is qualitatively similar to a pre-transitional disk, suggesting that the AB Aur disk is in a pre-transitional disk phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا