No Arabic abstract
In systems of N coupled anharmonic oscillators, exact resonant interactions play an important role in the energy exchange between normal modes. In the weakly nonlinear regime, those interactions may facilitate energy equipartition in Fourier space. We consider analytically resonant wave-wave interactions for the celebrated Fermi-Pasta-Ulam-Tsingou (FPUT) system. Using a number-theoretical approach based on cyclotomic polynomials, we show that the problem of finding exact resonances for a system of N particles is equivalent to a Diophantine equation whose solutions depend sensitively on the set of divisors of N. We provide an algorithm to construct all possible resonances, based on two methods: pairing-off and cyclotomic, which we introduce to build up explicit solutions to the 4-, 5- and 6-wave resonant conditions. Our results shed some light in the understanding of the long-standing FPUT paradox, regarding the sensitivity of the resonant manifolds with respect to the number of particles N and the corresponding time scale of the interactions leading to thermalisation. In this light we demonstrate that 6-wave resonances always exist for any N, while 5-wave resonances exist if N is divisible by 3 and N > 6. It is known (for finite N) that 4-wave resonances do not mix energy across the spectrum, so we investigate whether 5-wave resonances can produce energy mixing across a significant region of the Fourier spectrum by analysing the interconnected network of Fourier modes that can interact nonlinearly via resonances. The answer depends on the set of odd divisors of N that are not divisible by 3: the size of this set determines the number of dynamically independent components, corresponding to independent constants of motion (energies). We show that 6-wave resonances connect all these independent components, providing in principle a restoring mechanism for full-scale thermalisation.
We perform a thorough investigation of the first FPUT recurrence in the $beta$-FPUT chain for both positive and negative $beta$. We show numerically that the rescaled FPUT recurrence time $T_{r}=t_{r}/(N+1)^{3}$ depends, for large $N$, only on the parameter $Sequiv Ebeta(N+1)$. Our numerics also reveal that for small $left|Sright|$, $T_{r}$ is linear in $S$ with positive slope for both positive and negative $beta$. For large $left|Sright|$, $T_{r}$ is proportional to $left|Sright|^{-1/2}$ for both positive and negative $beta$ but with different multiplicative constants. In the continuum limit, the $beta$-FPUT chain approaches the modified Korteweg-de Vries (mKdV) equation, which we investigate numerically to better understand the FPUT recurrences on the lattice. In the continuum, the recurrence time closely follows the $|S|^{-1/2}$ scaling and can be interpreted in terms of solitons, as in the case of the KdV equation for the $alpha$ chain. The difference in the multiplicative factors between positive and negative $beta$ arises from soliton-kink interactions which exist only in the negative $beta$ case. We complement our numerical results with analytical considerations in the nearly linear regime (small $left|Sright|$) and in the highly nonlinear regime (large $left|Sright|$). For the former, we extend previous results using a shifted-frequency perturbation theory and find a closed form for $T_{r}$ which depends only on $S$. In the latter regime, we show that $T_{r}proptoleft| Sright|^{-1/2}$ is predicted by the soliton theory in the continuum limit. We end by discussing the striking differences in the amount of energy mixing as well as the existence of the FPUT recurrences between positive and negative $beta$ and offer some remarks on the thermodynamic limit.
The lifetimes of localized nonlinear modes in both the $beta$-Fermi-Pasta-Ulam-Tsingou ($beta$-FPUT) chain and a cubic $beta$-FPUT lattice are studied as functions of perturbation amplitude, and by extension, the relative strength of the nonlinear interactions compared to the linear part. We first recover the well known result that localized nonlinear excitations (LNEs) produced by a bond squeeze can be reduced to an approximate two-frequency solution and then show that the nonlinear term in the potential can lead to the production of secondary frequencies within the phonon band. This can affect the stability and lifetime of the LNE by facilitating interactions between the LNE and a low energy acoustic background which can be regarded as noise in the system. In the one dimensional FPUT chain, the LNE is stabilized by low energy acoustic emissions at early times; in some cases allowing for lifetimes several orders of magnitude larger than the oscillation period. The longest lived LNEs are found to satisfy the parameter dependence $mathcal{A}sqrt{beta}approx1.1$ where $beta$ is the relative nonlinear strength and $mathcal{A}$ is the displacement amplitude of the center particles in the LNE. In the cubic FPUT lattice, the LNE lifetime $T$ decreases rapidly with increasing amplitude $mathcal{A}$ and is well described by the double log relationship $log_{10}log_{10}(T)approx -(0.15pm0.01)mathcal{A}sqrt{beta}+(0.62pm0.02)$.
We study the original $alpha$-Fermi-Pasta-Ulam (FPU) system with $N=16,32$ and $64$ masses connected by a nonlinear quadratic spring. Our approach is based on resonant wave-wave interaction theory, i.e. we assume that, in the weakly nonlinear regime (the one in which Fermi was originally interested), the large time dynamics is ruled by exact resonances. After a detailed analysis of the $alpha$-FPU equation of motion, we find that the first non trivial resonances correspond to six-wave interactions. Those are precisely the interactions responsible for the thermalization of the energy in the spectrum. We predict that for small amplitude random waves the time scale of such interactions is extremely large and it is of the order of $1/epsilon^8$, where $epsilon$ is the small parameter in the system. The wave-wave interaction theory is not based on any threshold: equipartition is predicted for arbitrary small nonlinearity. Our results are supported by extensive numerical simulations. A key role in our finding is played by the {it Umklapp} (flip over) resonant interactions, typical of discrete systems. The thermodynamic limit is also briefly discussed.
We investigate numerically the existence and stability of higher-order recurrences (HoRs), including super-recurrences, super-super-recurrences, etc., in the alpha and beta Fermi-Pasta-Ulam-Tsingou (FPUT) lattices for initial conditions in the fundamental normal mode. Our results represent a considerable extension of the pioneering work of Tuck and Menzel on super-recurrences. For fixed lattice sizes, we observe and study apparent singularities in the periods of these HoRs, speculated to be caused by nonlinear resonances. Interestingly, these singularities depend very sensitively on the initial energy and the respective nonlinear parameters. Furthermore, we compare the mechanisms by which the super-recurrences in the two models breakdown as the initial energy and respective nonlinear parameters are increased. The breakdown of super-recurrences in the beta-FPUT lattice is associated with the destruction of the so-called metastable state and hence is associated with relaxation towards equilibrium. For the alpha-FPUT lattice, we find this is not the case and show that the super-recurrences break down while the lattice is still metastable. We close with comments on the generality of our results for different lattice sizes.
The dispersive interacting waves in Fermi-Pasta-Ulam (FPU) chains of particles in textit{thermal equilibrium} are studied from both statistical and wave resonance perspectives. It is shown that, even in a strongly nonlinear regime, the chain in thermal equilibrium can be effectively described by a system of weakly interacting textit{renormalized} nonlinear waves that possess (i) the Rayleigh-Jeans distribution and (ii) zero correlations between waves, just as noninteracting free waves would. This renormalization is achieved through a set of canonical transformations. The renormalized linear dispersion of these renormalized waves is obtained and shown to be in excellent agreement with numerical experiments. Moreover, a dynamical interpretation of the renormalization of the dispersion relation is provided via a self-consistency, mean-field argument. It turns out that this renormalization arises mainly from the trivial resonant wave interactions, i.e., interactions with no momentum exchange. Furthermore, using a multiple time-scale, statistical averaging method, we show that the interactions of near-resonant waves give rise to the broadening of the resonance peaks in the frequency spectrum of renormalized modes. The theoretical prediction for the resonance width for the thermalized $beta$-FPU chain is found to be in very good agreement with its numerically measured value.