Do you want to publish a course? Click here

Quantitative and systematic analysis of bias dependence of spin accumulation voltage in a non-degenerate Si spin valve

118   0   0.0 ( 0 )
 Added by Masashi Shiraishi
 Publication date 2018
  fields Physics
and research's language is English
 Authors Soobeom Lee




Ask ChatGPT about the research

Spin accumulation voltages in a non-degenerate Si spin valve are discussed quantitatively as a function of electric bias current using systematic experiments and model calculations. As an open question in semiconductor spintronics, the origin of the deviation of spin accumulation voltages measured experimentally in a non-degenerate Si spin valve is clarified from that obtained by model calculation using the spin drift diffusion equation including the effect of the spin-dependent interfacial resistance of tunneling barriers. Unlike the case of metallic spin valves, the bias dependence of the resistance-area product for a ferromagnet/MgO/Si interface, resulting in the reappearance of the conductance mismatch, plays a central role to induce the deviation.

rate research

Read More

We find extraordinary behavior of the local two-terminal spin accumulation signals in ferromagnet (FM)/semiconductor (SC) lateral spin-valve devices. With respect to the bias voltage applied between two FM/SC Schottky tunnel contacts, the local spin-accumulation signal can show nonmonotonic variations, including a sign inversion. A part of the nonmonotonic features can be understood qualitatively by considering the rapid reduction in the spin polarization of the FM/SC interfaces with increasing bias voltage. In addition to the sign inversion of the FM/SC interface spin polarization, the influence of the spin-drift effect in the SC layer and the nonlinear electrical spin conversion at a biased FM/SC contact are discussed.
93 - Tomoyuki Sasaki 2014
Spin transport in non-degenerate semiconductors is expected to pave a way to the creation of spin transistors, spin logic devices and reconfigurable logic circuits, because room temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in non-degenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observed the modulation of the Hanle-type spin precession signals, which is a characteristic spin dynamics in non-degenerate semiconductor. We obtained long spin transport of more than 20 {mu}m and spin rotation, greater than 4{pi} at RT. We also observed gate-induced modulation of spin transport signals at RT. The modulation of spin diffusion length as a function of a gate voltage was successfully observed, which we attributed to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to make avenues to create of practical Si-based spin MOSFETs.
Competition between superconducting and ferromagnetic ordering at interfaces between ferromagnets (F) and superconductors (S) gives rise to several proximity effects such as odd-triplet superconductivity and spin-polarized supercurrents. A prominent example of an S/F proximity effect is the spin switch effect (SSE) observed in S/F/N/F superconducting spin-valve multilayers, in which the superconducting transition temperature T$_c$ is controlled by the angle $phi$ between the magnetic moments of the F layers separated by a nonmagnetic metallic spacer N. Here we present an experimental study of SSE in Nb/Co/Cu/Co/CoO$_x$ nanowires measured as a function of bias current flowing in the plane of the layers. These measurements reveal an unexpected dependence of T$_c(phi)$ on the bias current: T$_c(pi)$--T$_c(0)$ changes sign with increasing current bias. We attribute the origin of this bias dependence of the SSE to a spin Hall current flowing perpendicular to the plane of the multilayer, which suppresses T$_c$ of the multilayer. The bias dependence of SSE can be important for hybrid F/S devices such as those used in cryogenic memory for superconducting computers as device dimensions are scaled down to the nanometer length scale.
225 - Pengshun S. Luo 2009
We have measured the transport properties of Ferromagnet - Superconductor nanostructures, where two superconducting aluminum (Al) electrodes are connected through two ferromagnetic iron (Fe) ellipsoids in parallel. We find that, below the superconducting critical temperature of Al, the resistance depends on the relative alignment of the ferromagnets magnetization. This spin-valve effect is analyzed in terms of spin accumulation in the superconducting electrode submitted to inverse proximity effect.
67 - G. Xiang , B. L. Sheu , M. Zhu 2006
We report the observation of the spin valve effect in (Ga,Mn)As/p-GaAs/(Ga,Mn)As trilayer devices. Magnetoresistance measurements carried out in the current in plane geometry reveal positive magnetoresistance peaks when the two ferromagnetic layers are magnetized orthogonal to each other. Measurements carried out for different post-growth annealing conditions and spacer layer thickness suggest that the positive magnetoresistance peaks originate in a noncollinear spin valve effect due to spin-dependent scattering that is believed to occur primarily at interfaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا