We compare the rise and decay timescales of $sim$200 long-term ($sim$weeks-months) GeV and R-band outbursts and $sim$25 short-term ($sim$hr-day) GeV flares in a sample of 10 blazars using light curves from the Fermi-LAT and the Yale/SMARTS monitoring project. We find that most of the long-term outbursts are symmetric, indicating that the observed variability is dominated by the crossing timescale of a disturbance, e.g., a shock. A larger fraction of short-term flares are asymmetric with an approximately equal fraction of longer and shorter decay than rise timescale. We employ the MUlti-ZOne Radiation Feedback (MUZORF) model to interpret the above results. We find that the outbursts with slow rise times indicate a gradual acceleration of the particles to GeV energy. A change in the bulk Lorentz factor of the plasma or the width of the shocked region can lead to an increase of the cooling time causing a faster rise than decay time. Parameters such as the luminosity or the distance of the broad line region (BLR) affects the cooling time strongly if a single emission mechanism, e.g., external Compton scattering of BLR photons is considered but may not if other mechanisms, e.g., synchrotron self-compton and external Compton scattering of the torus photon are included. This work carries out a systematic study of the symmetry of flares, which can be used to estimate relevant geometric and physical parameters of blazar jets in the context of the MUZORF model.