No Arabic abstract
We compare the rise and decay timescales of $sim$200 long-term ($sim$weeks-months) GeV and R-band outbursts and $sim$25 short-term ($sim$hr-day) GeV flares in a sample of 10 blazars using light curves from the Fermi-LAT and the Yale/SMARTS monitoring project. We find that most of the long-term outbursts are symmetric, indicating that the observed variability is dominated by the crossing timescale of a disturbance, e.g., a shock. A larger fraction of short-term flares are asymmetric with an approximately equal fraction of longer and shorter decay than rise timescale. We employ the MUlti-ZOne Radiation Feedback (MUZORF) model to interpret the above results. We find that the outbursts with slow rise times indicate a gradual acceleration of the particles to GeV energy. A change in the bulk Lorentz factor of the plasma or the width of the shocked region can lead to an increase of the cooling time causing a faster rise than decay time. Parameters such as the luminosity or the distance of the broad line region (BLR) affects the cooling time strongly if a single emission mechanism, e.g., external Compton scattering of BLR photons is considered but may not if other mechanisms, e.g., synchrotron self-compton and external Compton scattering of the torus photon are included. This work carries out a systematic study of the symmetry of flares, which can be used to estimate relevant geometric and physical parameters of blazar jets in the context of the MUZORF model.
Context:Blazars are the rarest and most powerful active galactic nuclei, playing a crucial and growing role in today multi-frequency and multi-messenger astrophysics. Current blazar catalogs, however, are incomplete and particularly depleted at low Galactic latitudes. Aims: We aim at augmenting the current blazar census to build a catalog of blazar candidates with homogeneous sky coverage that can provide candidate counterparts to unassociated gamma-ray sources, sources of high-energy neutrino emission, and ultra-high energy cosmic rays. Methods: Starting from the ALMA Calibrator Catalog we built a catalog of 1580 blazar candidates (ALMA Blazar Candidates, ABC) for which we collect multi-wavelength information. We also compared ABC sources with existing blazar catalogs. Results: The ABC catalogue fills the lack of low Galactic latitude sources in current blazar catalogues. ABC sources are significantly dimmer than known blazars in Gaia g band, and they appear bluer in SDSS and WISE colors. The majority of ABC sources (~ 90%) have optical spectra that classify them as QSO, while the remaining sources resulted galactic objects. ABC sources are similar in X-rays to known blazar, while in gamma-rays they are on average dimmer and softer, indicating a significant contribution of FSRQ sources. Making use of WISE colours, we classified 715 ABC sources as candidate gamma-ray blazar of different classes. Conclusions: We built a new catalogue of 1580 candidate blazars with a rich multi-wavelength data-set, filling the lack of low Galactic latitude sources in current blazar catalogues. This will be particularly important to identify the source population of high energy neutrinos or ultra-high energy cosmic rays. The data collected by the upcoming LSST surveys will provide a key tool to investigate the possible blazar nature of these sources.
RadioAstron is a 10 m orbiting radio telescope mounted on the Spektr-R satellite, launched in 2011, performing Space Very Long Baseline Interferometry (SVLBI) observations supported by a global ground array of radio telescopes. With an apogee of about 350 000 km, it is offering for the first time the possibility to perform {mu}as-resolution imaging in the cm-band. We present observations at 22 GHz of 3C 273, performed in 2014, designed to reach a maximum baseline of approximately nine Earth diameters. Reaching an angular resolution of 0.3 mas, we study a particularly low-activity state of the source, and estimate the nuclear region brightness temperature, comparing with the extreme one detected one year before during the RadioAstron early science period. We also make use of the VLBA-BU-BLAZAR survey data, at 43 GHz, to study the kinematics of the jet in a 1.5-year time window. We find that the nuclear brightness temperature is two orders of magnitude lower than the exceptionally high value detected in 2013 with RadioAstron at the same frequency (1.4x10^13 K, source-frame), and even one order of magnitude lower than the equipartition value. The kinematics analysis at 43 GHz shows that a new component was ejected 2 months after the 2013 epoch, visible also in our 22 GHz map presented here. Consequently this was located upstream of the core during the brightness temperature peak. These observations confirm that the previously detected extreme brightness temperature in 3C 273, exceeding the inverse Compton limit, is a short-lived phenomenon caused by a temporary departure from equipartition. Thus, the availability of interferometric baselines capable of providing {mu}as angular resolution does not systematically imply measured brightness temperatures over the known physical limits for astrophysical sources.
The characteristic two-component blazar spectral energy distribution (SED) can be of either leptonic and/or hadronic origins. The potential association of the high-energy neutrino event IceCube-170922A with the flaring blazar TXS~0506+056 indicates that hadronic processes may operate in a blazar jet. Despite multi-wavelength follow-ups of the event and extensive theoretical modelings, the radiation mechanisms and the underlying magnetic field strength and configuration remain poorly understood. In this paper, we consider generic leptonic and hadronic blazar spectral models with distinct magnetic field strengths and radiation mechanisms. We analytically reproduce the SEDs and the neutrino flux of hadronic models, and predict their X-ray to $gamma$-ray polarization degrees. Furthermore, by performing relativistic magnetohydrodynamic (RMHD) simulations taking into account the polarization-dependent radiation transfer, we study the time-dependent multi-wavelength polarization variability of the proton synchrotron model under a shock scenario. Our results suggest that the high-energy polarization degree and the neutrino flux can be jointly used to pinpoint the leptonic and/or hadronic blazar radiation mechanisms in the X-ray and $gamma$-ray bands, and to infer the magnetic field strength in the emission region. Additionally, the temporal multi-wavelength polarization signatures in the proton synchrotron model shed light on the jet energy composition and the dynamical importance of magnetic fields in the blazar emission region. Future multi-wavelength polarimetry facilities such as {it IXPE} and {it AMEGO} together with neutrino telescopes such as {it IceCube} can provide unprecedented observational constraints to probe the blazar radiation mechanisms and jet dynamics.
The spatially resolved broad-band spectroscopy with Very Long Baseline Interferometry (VLBI) is one of the few methods that can probe the physical conditions inside blazar jets. We report on measurements of the magnetic field strength in parsec-scale radio structures of selected bright Fermi blazars, based on fitting the synchrotron spectrum to VLBA images made at seven frequencies in a 4.6 -- 43.2 GHz range. Upper limits of B <= 10^-2 -- 10^2 G (observers frame) could be placed on the magnetic field strength in 13 sources. Hard radio spectra (-0.5 <= a <= +0.1, S_nu ~ nu^a) observed above the synchrotron peak may either be an indication of a hard energy spectrum of the emitting electron population or result from a significant inhomogeneity of the emitting region.
Gaseous halos play a key role for understanding inflow, feedback and the overall baryon budget in galaxies. Literature models predict transitions of the state of the gaseous halo between cold and hot accretion, winds, fountains and hydrostatic halos at certain galaxy masses. Since luminosities of radio AGN are sensitive to halo densities, any significant transition would be expected to show up in the radio luminosities of large samples of galaxies. The Low Frequency Array (LOFAR) Two Metre Sky Survey (LoTSS) has indeed identified a galaxy stellar mass scale, $10^{11} M_odot$ , above which the radio luminosities increase disproportionately. Here, we investigate, if radio luminosities of galaxies, especially the marked rise at galaxy masses around $10^{11} M_odot$, can be explained with standard assumptions on jet powers, scaling between black hole-mass and galaxy mass and gaseous halos. We developed models for the radio luminosity of radio AGN in halos under infall, galactic wind and hydrostatic conditions based on observational data and theoretical constraints, and compared it to LoTSS data for a large sample of galaxies in the mass rangebetween $10^{8.5} M_odot$ and $10^{12} M_odot$. Assuming the same characteristic upper limit to jet powers as is known from high galaxy masses to hold at all masses, we find that the maximum radio luminosities for the hydrostatic gas halos fit well with the upper envelope of the distribution of the LOFAR data. The marked rise in radio luminosity at $10^{11} M_odot$ is matched in our model, and is related to significant change in halo gas density around this galaxy mass, which is a consequence of the lower cooling rates at higher virial temperature. Wind and infall models overpredict the radio luminosities at small galaxy masses and have no particular steepening of the run of the radio luminosities predicted at any galaxy mass. [...]