Do you want to publish a course? Click here

The physical properties of AM CVn stars: new insights from Gaia DR2

103   0   0.0 ( 0 )
 Added by Gavin Ramsay
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

AM CVn binaries are hydrogen deficient compact binaries with an orbital period in the 5-65 min range and are predicted to be strong sources of persistent gravitational wave radiation. Using Gaia Data Release 2, we present the parallaxes and proper motions of 41 out of the 56 known systems. Compared to the parallax determined using the HST Fine Guidance Sensor we find that the archetype star, AM CVn, is significantly closer than previously thought. This resolves the high luminosity and mass accretion rate which models had difficulty in explaining. Using Pan-STARRS1 data we determine the absolute magnitude of the AM CVn stars. There is some evidence that donor stars have a higher mass and radius than expected for white dwarfs or that the donors are not white dwarfs. Using the distances to the known AM CVn stars we find strong evidence that a large population of AM CVn stars have still to be discovered. As this value sets the background to the gravitational wave signal of LISA, this is of wide interest. We determine the mass transfer rate for 15 AM CVn stars and find that the majority have a rate significantly greater than expected from standard models. This is further evidence that the donor star has a greater size than expected.



rate research

Read More

We consider initial stage of the evolution of AM CVn type stars with white dwarf donors, which is accompanied by thermonuclear explosions in the layer of accreted He. It is shown that the accretion never results in detonation of He and accretors in AM CVn stars finish their evolution as massive WDs. We found, for the first time, that in the outbursts the synthesis of n-rich isotopes, initiated by the ${mathrm{^{22}{Ne}(alpha,n)^{25}Mg}}$ reaction becomes possible.
131 - Arne Rau 2009
We present three new candidate AM CVn binaries, plus one confirmed new system, from a spectroscopic survey of color-selected objects from the Sloan Digital Sky Survey. All four systems were found from their helium emission lines in low-resolution spectra taken on the Hale telescope at Palomar, and the Nordic Optical Telescope and the William Herschel Telescope on La Palma. The ultra-compact binary nature of SDSS J090221.35+381941.9 was confirmed using phase-resolved spectroscopy at the Keck-I telescope. From the characteristic radial velocity `S-wave observed in the helium emission lines we measure an orbital period of 48.31 +/- 0.08 min. The continuum emission can be described with a blackbody or a helium white dwarf atmosphere of T_eff ~ 15,000K, in agreement with theoretical cooling models for relatively massive accretors and/or donors. The absence in the spectrum of broad helium absorption lines from the accreting white dwarf suggests that the accreting white dwarf cannot be much hotter than 15,000K, or that an additional component such as the accretion disk contributes substantially to the optical flux. Two of the candidate systems, SDSS J152509.57+360054.5 and SDSS J172102.48+273301.2, do show helium absorption in the blue part of their spectra in addition to the characteristic helium emission lines. This, in combination with the high effective temperatures of ~18,000K and ~16,000K suggests both two be at orbital periods below ~40min. The third candidate, SDSS J164228.06+193410.0, exhibits remarkably strong helium emission on top of a relatively cool (T_eff~12,000K) continuum, indicating an orbital period above ~50min.
AM CVn systems are ultra-compact, helium-rich, accreting binaries with degenerate or semi-degenerate donors. We report the discovery of five new eclipsing AM CVn systems with orbital periods of 61.5, 55.5, 53.3, 37.4, and 35.4 minutes. These systems were discovered by searching for deep eclipses in the Zwicky Transient Facility (ZTF) lightcurves of white dwarfs selected using Gaia parallaxes. We obtained phase-resolved spectroscopy to confirm that all systems are AM CVn binaries, and we obtained high-speed photometry to confirm the eclipse and characterize the systems. The spectra of two long-period systems (61.5 and 53.3 minutes) show many emission and absorption lines, indicating the presence of N, O, Na, Mg, Si, and Ca, and also the K and Zn, elements which have never been detected in AM CVn systems before. By modelling the high-speed photometry, we measured the mass and radius of the donor star, potentially constraining the evolutionary channel that formed these AM CVn systems. We determined that the average mass of the accreting white dwarf is $approx0.8$$mathrm{M_{odot}}$, and that the white dwarfs in long-period systems are hotter than predicted by recently updated theoretical models. The donors have a high entropy and are a factor of $approx$ 2 more massive compared to zero-entropy donors at the same orbital period. The large donor radius is most consistent with He-star progenitors, although the observed spectral features seem to contradict this. The discovery of 5 new eclipsing AM~CVn systems is consistent with the known observed AM CVn space density and estimated ZTF recovery efficiency. Based on this estimate, we expect to find another 1--4 eclipsing AM CVn systems as ZTF continues to obtain data. This will further increase our understanding of the population, but will require high precision data to better characterize these 5 systems and any new discoveries.
We find that the combined LF of N- and SC-type stars are consistent with a Gaussian distribution peaking at M_bol~ -5.2 mag. The resulting LF however shows two tails at lower and higher luminosities more extended than those previously found, indicating that AGB carbon stars with Solar metallicity may reach M_bol~-6.0 mag. We find that J-type stars are about half a magnitude fainter on average than N- and SC-type stars, while R-hot stars are half a magnitude brighter than previously found. The Galactic spatial distribution and velocity components of the N-, SC- and J-type stars are very similar, while about 30 % of the R-hot stars in the sample are located at distances larger than ~ 500 pc from the Galactic Plane, and show a significant drift with respect to the local standard of rest. The LF derived for N- and SC-type in the Solar neighbourhood fully agrees with the expected luminosity of stars of 1.5-3 M_o on the AGB. On a theoretical basis, the existence of an extended low luminosity tail would require a contribution of extrinsic low mass carbon stars, while the high luminosity one would imply that stars with mass up to ~5 Mo may become carbon star on the AGB. J-type stars not only differ significantly in their chemical composition with respect to the N- and SC-types but also in their LF, which reinforces the idea that these carbon stars belong to a dvifferent type whose origin is still unknown. The derived luminosities of R-hot stars make these stars unlikely to be in the red-clump as previously claimed. On the other hand, the derived spatial distribution and kinematic properties, together with their metallicity, indicate that most of the N-, SC- and J-type stars belong to the thin disc population, while a significant fraction of R-hot stars show characteristics compatible with the thick disc.
We examine the relationship between superoutburst duration $t_{rm dur}$ and orbital period $P_{rm orb}$ in AM CVn ultra-compact binary systems. We show that the previously determined steep relation derived by Levitan et al (2015) was strongly influenced by the inclusion of upper limits for systems with a relatively long orbital period in their fit. Excluding the upper limit values and including $t_{rm dur}$ values for three systems at long $P_{rm orb}$ which were not considered previously, then $d log (t_{rm dur})/ d log (P_{rm orb})$ is flat as predicted by Cannizzo & Nelemans(2015)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا