Do you want to publish a course? Click here

From $q$-Stirling numbers to the Delta Conjecture: a viewpoint from vincular patterns

124   0   0.0 ( 0 )
 Added by Shishuo Fu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The distribution of certain Mahonian statistic (called $mathrm{BAST}$) introduced by Babson and Steingr{i}msson over the set of permutations that avoid vincular pattern $1underline{32}$, is shown bijectively to match the distribution of major index over the same set. This new layer of equidistribution is then applied to give alternative interpretations of two related $q$-Stirling numbers of the second kind, studied by Carlitz and Gould. Moreover, extensions to an Euler-Mahonian statistic over ordered set partitions, and to statistics over ordered multiset partitions present themselves naturally. The latter of which is shown to be related to the recently proven Delta Conjecture. During the course, a refined relation between $mathrm{BAST}$ and its reverse complement $mathrm{STAT}$ is derived as well.



rate research

Read More

We give combinatorial proofs of $q$-Stirling identities using restricted growth words. This includes a poset theoretic proof of Carlitzs identity, a new proof of the $q$-Frobenius identity of Garsia and Remmel and of Ehrenborgs Hankel $q$-Stirling determinantal identity. We also develop a two parameter generalization to unify identities of Mercier and include a symmetric function version.
88 - Marino Romero 2016
We use a weight-preserving, sign-reversing involution to find a combinatorial expansion of $Delta_{e_k} e_n$ at $q=1$ in terms of the elementary symmetric function basis. We then use a weight-preserving bijection to prove the Delta Conjecture at $q=1$. The method of proof provides a variety of structures which can compute the inner product of $Delta_{e_k} e_n|_{q=1}$ with any symmetric function.
The Legendre-Stirling numbers of the second kind were introduced by Everitt et al. in the spectral theory of powers of the Legendre differential expressions. In this paper, we provide a combinatorial code for Legendre-Stirling set partitions. As an application, we obtain combinatorial expansions of the Legendre-Stirling numbers of both kinds. Moreover, we present grammatical descriptions of the Jacobi-Stirling numbers of both kinds.
Restricted Whitney numbers of the first kind appear in the combinatorial recursion for the matroid Kazhdan-Lusztig polynomials. In the special case of braid matroids (the matroid associated to the partition lattice, the complete graph, the type A Coxeter arrangement and the symmetric group) these restricted Whitney numbers are Stirling numbers of the first kind. We use this observation to obtain a formula for the coefficients of the Kazhdan-Lusztig polynomials for braid matroids in terms of sums of products of Stirling numbers of the first kind. This results in new identities between Stirling numbers of the first kind and Stirling numbers of the second kind, as well as a non-recursive formula for the braid matroid Kazhdan-Lusztig polynomials.
The emph{$q,t$-Catalan numbers} $C_n(q,t)$ are polynomials in $q$ and $t$ that reduce to the ordinary Catalan numbers when $q=t=1$. These polynomials have important connections to representation theory, algebraic geometry, and symmetric functions. Haglund and Haiman discovered combinatorial formulas for $C_n(q,t)$ as weighted sums of Dyck paths (or equivalently, integer partitions contained in a staircase shape). This paper undertakes a combinatorial investigation of the joint symmetry property $C_n(q,t)=C_n(t,q)$. We conjecture some structural decompositions of Dyck objects into mutually opposite subcollections that lead to a bijective explanation of joint symmetry in certain cases. A key new idea is the construction of infinite chains of partitions that are independent of $n$ but induce the joint symmetry for all $n$ simultaneously. Using these methods, we prove combinatorially that for $0leq kleq 9$ and all $n$, the terms in $C_n(q,t)$ of total degree $binom{n}{2}-k$ have the required symmetry property.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا