Do you want to publish a course? Click here

Policy Transfer with Strategy Optimization

61   0   0.0 ( 0 )
 Added by Wenhao Yu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Computer simulation provides an automatic and safe way for training robotic control policies to achieve complex tasks such as locomotion. However, a policy trained in simulation usually does not transfer directly to the real hardware due to the differences between the two environments. Transfer learning using domain randomization is a promising approach, but it usually assumes that the target environment is close to the distribution of the training environments, thus relying heavily on accurate system identification. In this paper, we present a different approach that leverages domain randomization for transferring control policies to unknown environments. The key idea that, instead of learning a single policy in the simulation, we simultaneously learn a family of policies that exhibit different behaviors. When tested in the target environment, we directly search for the best policy in the family based on the task performance, without the need to identify the dynamic parameters. We evaluate our method on five simulated robotic control problems with different discrepancies in the training and testing environment and demonstrate that our method can overcome larger modeling errors compared to training a robust policy or an adaptive policy.

rate research

Read More

90 - Taisuke Kobayashi 2020
The recent remarkable progress of deep reinforcement learning (DRL) stands on regularization of policy for stable and efficient learning. A popular method, named proximal policy optimization (PPO), has been introduced for this purpose. PPO clips density ratio of the latest and baseline policies with a threshold, while its minimization target is unclear. As another problem of PPO, the symmetric threshold is given numerically while the density ratio itself is in asymmetric domain, thereby causing unbalanced regularization of the policy. This paper therefore proposes a new variant of PPO by considering a regularization problem of relative Pearson (RPE) divergence, so-called PPO-RPE. This regularization yields the clear minimization target, which constrains the latest policy to the baseline one. Through its analysis, the intuitive threshold-based design consistent with the asymmetry of the threshold and the domain of density ratio can be derived. Through four benchmark tasks, PPO-RPE performed as well as or better than the conventional methods in terms of the task performance by the learned policy.
Scarce data is a major challenge to scaling robot learning to truly complex tasks, as we need to generalize locally learned policies over different task contexts. Contextual policy search offers data-efficient learning and generalization by explicitly conditioning the policy on a parametric context space. In this paper, we further structure the contextual policy representation. We propose to factor contexts into two components: target contexts that describe the task objectives, e.g. target position for throwing a ball; and environment contexts that characterize the environment, e.g. initial position or mass of the ball. Our key observation is that experience can be directly generalized over target contexts. We show that this can be easily exploited in contextual policy search algorithms. In particular, we apply factorization to a Bayesian optimization approach to contextual policy search both in sampling-based and active learning settings. Our simulation results show faster learning and better generalization in various robotic domains. See our supplementary video: https://youtu.be/MNTbBAOufDY.
112 - Jiajin Li , Baoxiang Wang 2018
Policy optimization on high-dimensional continuous control tasks exhibits its difficulty caused by the large variance of the policy gradient estimators. We present the action subspace dependent gradient (ASDG) estimator which incorporates the Rao-Blackwell theorem (RB) and Control Variates (CV) into a unified framework to reduce the variance. To invoke RB, our proposed algorithm (POSA) learns the underlying factorization structure among the action space based on the second-order advantage information. POSA captures the quadratic information explicitly and efficiently by utilizing the wide & deep architecture. Empirical studies show that our proposed approach demonstrates the performance improvements on high-dimensional synthetic settings and OpenAI Gyms MuJoCo continuous control tasks.
Policy Optimization (PO) is a widely used approach to address continuous control tasks. In this paper, we introduce the notion of mediator feedback that frames PO as an online learning problem over the policy space. The additional available information, compared to the standard bandit feedback, allows reusing samples generated by one policy to estimate the performance of other policies. Based on this observation, we propose an algorithm, RANDomized-exploration policy Optimization via Multiple Importance Sampling with Truncation (RANDOMIST), for regret minimization in PO, that employs a randomized exploration strategy, differently from the existing optimistic approaches. When the policy space is finite, we show that under certain circumstances, it is possible to achieve constant regret, while always enjoying logarithmic regret. We also derive problem-dependent regret lower bounds. Then, we extend RANDOMIST to compact policy spaces. Finally, we provide numerical simulations on finite and compact policy spaces, in comparison with PO and bandit baselines.
Many advances that have improved the robustness and efficiency of deep reinforcement learning (RL) algorithms can, in one way or another, be understood as introducing additional objectives, or constraints, in the policy optimization step. This includes ideas as far ranging as exploration bonuses, entropy regularization, and regularization toward teachers or data priors when learning from experts or in offline RL. Often, task reward and auxiliary objectives are in conflict with each other and it is therefore natural to treat these examples as instances of multi-objective (MO) optimization problems. We study the principles underlying MORL and introduce a new algorithm, Distillation of a Mixture of Experts (DiME), that is intuitive and scale-invariant under some conditions. We highlight its strengths on standard MO benchmark problems and consider case studies in which we recast offline RL and learning from experts as MO problems. This leads to a natural algorithmic formulation that sheds light on the connection between existing approaches. For offline RL, we use the MO perspective to derive a simple algorithm, that optimizes for the standard RL objective plus a behavioral cloning term. This outperforms state-of-the-art on two established offline RL benchmarks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا