Do you want to publish a course? Click here

Photon enhancement in a homogeneous axion dark matter background

90   0   0.0 ( 0 )
 Added by Ariel Arza
 Publication date 2018
  fields Physics
and research's language is English
 Authors Ariel Arza




Ask ChatGPT about the research

We study the propagation of photons in a homogeneous axion dark matter background. When the axion decay into two photons is stimulated, the photon field exhibits a parametric instability in a small bandwidth centered on one half of the axion mass. We estimate analytically the enhancement for both coherent and non-coherent axion fields and we find that this effect could be relevant in the context of miniclusters and galactic halos.



rate research

Read More

The QCD axion or axion-like particles are candidates of dark matter of the universe. On the other hand, axion-like excitations exist in certain condensed matter systems, which implies that there can be interactions of dark matter particles with condensed matter axions. We discuss the relationship between the condensed matter axion and a collective spin-wave excitation in an anti-ferromagnetic insulator at the quantum level. The conversion rate of the light dark matter, such as the elementary particle axion or hidden photon, into the condensed matter axion is estimated for the discovery of the dark matter signals.
We investigate a scenario where the dark matter of the Universe is made from very light hidden photons transforming under a $Z_{2}$-symmetry. In contrast to the usual situation, kinetic mixing is forbidden by the symmetry and the dark photon interacts with the Standard Model photon only via an axion-like particle acting as a messenger. Focusing on signatures involving the ordinary photon, our survey of the phenomenology includes limits from cosmological stability, CMB distortions, astrophysical energy loss, light-shining-through-walls experiments, helioscopes and solar X-ray observations.
A portion of light scalar dark matter, especially axions, may organize into gravitationally bound clumps (stars) and be present in large number in the galaxy today. It is therefore of utmost interest to determine if there are novel observational signatures of this scenario. Work has shown that for moderately large axion-photon couplings, such clumps can undergo parametric resonance into photons, for clumps above a critical mass $M^{star}_c$ determined precisely by some of us in Ref. [1]. In order to obtain a clump above the critical mass in the galaxy today would require mergers. In this work we perform full 3-dimensional simulations of pairs of axion clumps and determine the conditions under which mergers take place through the emission of scalar waves, including analyzing head-on and non-head-on collisions, phase dependence, and relative velocities. Consistent with other work in the literature, we find that the final mass from the merger $M^{star}_{text{final}}approx 0.7(M^{star}_1+M^{star}_2)$ is larger than each of the original clump masses (for $M^{star}_1sim M^{star}_2$). Hence, it is possible for sub-critical mass clumps to merge and become super-critical and therefore undergo parametric resonance into photons. We find that mergers are expected to be kinematically allowed in the galaxy today for high Peccei-Quinn scales, which is strongly suggested by unification ideas, although the collision rate is small. While mergers can happen for axions with lower Peccei-Quinn scales due to statistical fluctuations in relative velocities, as they have a high collision rate. We estimate the collision and merger rates within the Milky Way galaxy today. We find that a merger leads to a flux of energy on earth that can be appreciable and we mention observational search strategies.
If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more) shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.
We present an interesting Higgs portal model where an axion-like particle (ALP) couples to the Standard Model sector only via the Higgs field. The ALP becomes stable due to CP invariance and turns out to be a natural candidate for freeze-in dark matter because its properties are controlled by the perturbative ALP shift symmetry. The portal coupling can be generated non-perturbatively by a hidden confining gauge sector, or radiatively by new leptons charged under the ALP shift symmetry. Such UV completions generally involve a CP violating phase, which makes the ALP unstable and decay through mixing with the Higgs boson, but can be sufficiently suppressed in a natural way by invoking additional symmetries.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا