Do you want to publish a course? Click here

Bounding the minimal number of generators of an Azumaya algebra

55   0   0.0 ( 0 )
 Added by Ben Williams
 Publication date 2018
  fields
and research's language is English
 Authors Ben Williams




Ask ChatGPT about the research

A paper of U. First & Z. Reichstein proves that if $R$ is a commutative ring of dimension $d$, then any Azumaya algebra $A$ over $R$ can be generated as an algebra by $d+2$ elements, by constructing such a generating set, but they do not prove that this number of generators is required, or even that for an arbitrarily large $r$ that there exists an Azumaya algebra requiring $r$ generators. In this paper, for any given fixed $nge 2$, we produce examples of a base ring $R$ of dimension $d$ and an Azumaya algebra of degree $n$ over $R$ that requires $r(d,n) = lfloor frac{d}{2n-2} rfloor + 2$ generators. While $r(d,n) < d+2$ in general, we at least show that there is no uniform upper bound on the number of generators required for Azumaya algebras. The method of proof is to consider certain varieties $B^r_n$ that are universal varieties for degree-$n$ Azumaya algebras equipped with a set of $r$ generators, and specifically we show that a natural map on Chow group $CH^{(r-1)(n-1)}_{PGL_n} to CH^{(r-1)(n-1)}(B^r_n)$ fails to be injective, which is to say that the map fails to be injective in the first dimension in which it possibly could fail. This implies that for a sufficiently generic rank-$n$ Azumaya algebra, there is a characteristic class obstruction to generation by $r$ elements.



rate research

Read More

Let $mathfrak{sp}_{2n}(mathbb {K})$ be the symplectic Lie algebra over an algebraically closed field of characteristic zero. We prove that for any nonzero nilpotent element $X in mathfrak{sp}_{2n}(mathbb {K})$ there exists a nilpotent element $Y in mathfrak{sp}_{2n}(mathbb {K})$ such that $X$ and $Y$ generate $mathfrak{sp}_{2n}(mathbb {K})$.
Consider the special linear Lie algebra $mathfrak{sl}_n(mathbb {K})$ over an infinite field of characteristic different from $2$. We prove that for any nonzero nilpotent $X$ there exists a nilpotent $Y$ such that the matrices $X$ and $Y$ generate the Lie algebra $mathfrak{sl}_n(mathbb {K})$.
240 - Alexandre Bazin 2018
We bound the number of minimal hypergraph transversals that arise in tri-partite 3-uniform hypergraphs, a class commonly found in applications dealing with data. Let H be such a hypergraph on a set of vertices V. We give a lower bound of 1.4977 |V | and an upper bound of 1.5012 |V | .
Evolution algebras are non-associative algebras that describe non-Mendelian hereditary processes and have connections with many other areas. In this paper we obtain necessary and sufficient conditions for a given algebra $A$ to be an evolution algebra. We prove that the problem is equivalent to the so-called $SDC$ $problem$, that is, the $simultaneous$ $diagonalisation$ $via$ $congruence$ of a given set of matrices. More precisely we show that an $n$-dimensional algebra $A$ is an evolution algebra if, and only if, a certain set of $n$ symmetric $ntimes n$ matrices ${M_{1}, ldots, M_{n}}$ describing the product of $A$ are $SDC$. We apply this characterisation to show that while certain classical genetic algebras (representing Mendelian and auto-tetraploid inheritance) are not themselves evolution algebras, arbitrarily small perturbations of these are evolution algebras. This is intriguing as evolution algebras model asexual reproduction unlike the classical ones.
115 - Daniel S. Sage 2012
Let A be an associative algebra with identity over a field k. An atomistic subsemiring R of the lattice of subspaces of A, endowed with the natural product, is a subsemiring which is a closed atomistic sublattice. When R has no zero divisors, the set of atoms of R is endowed with a multivalued product. We introduce an equivalence relation on the set of atoms such that the quotient set with the induced product is a monoid, called the condensation monoid. Under suitable hypotheses on R, we show that this monoid is a group and the class of k1_A is the set of atoms of a subalgebra of A called the focal subalgebra. This construction can be iterated to obtain higher condensation groups and focal subalgebras. We apply these results to G-algebras for G a group; in particular, we use them to define new invariants for finite-dimensional irreducible projective representations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا