Do you want to publish a course? Click here

Thermal vorticity and spin polarization in heavy-ion collisions

75   0   0.0 ( 0 )
 Added by Xu-Guang Huang
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The hot and dense matter generated in heavy-ion collisions contains intricate vortical structure in which the local fluid vorticity can be very large. Such vorticity can polarize the spin of the produced particles. We study the event-by-event generation of the so-called thermal vorticity in Au + Au collisions at energy region $sqrt{s}=7.7-200$ GeV and calculate its time evolution, spatial distribution, etc., in a multiphase transport (AMPT) model. We then compute the spin polarization of the $Lambda$ and $bar{Lambda}$ hyperons as a function of $sqrt{s}$, transverse momentum $p_T$, rapidity, and azimuthal angle. Furthermore, we study the harmonic flow of the spin, in a manner analogous to the harmonic flow of the particle number. The measurement of the spin harmonic flow may provide a way to probe the vortical structure in heavy-ion collisions. We also discuss the spin polarization of $Xi^0$ and $Omega^-$ hyperons which may provide further information about the spin polarization mechanism of hadrons.

rate research

Read More

We review studies of vortical motion and the resulting global polarization of $Lambda$ and $bar{Lambda}$ hyperons in heavy-ion collisions, in particular, within 3FD model. 3FD predictions for the global midrapidity polarization in the FAIR-NICA energy range are presented. The 3FD simulations indicate that energy dependence of the observed global polarization of hyperons in the midrapidity region is a consequence of the decrease of the vorticity in the central region with the collision energy rise because of pushing out the vorticity field into the fragmentation regions. At high collision energies this pushing-out results in a peculiar vortical structure consisting of two vortex rings: one ring in the target fragmentation region and another one in the projectile fragmentation region with matter rotation being opposite in these two rings.
Relativistic heavy-ion collisions create hot quark-gluon plasma as well as very strong electromagnetic (EM) and fluid vortical fields. The strong EM field and vorticity can induce intriguing macroscopic quantum phenomena such as chiral magnetic, chiral separation, chiral electric separation, and chiral vortical effects as well as the spin polarization of hadrons. These phenomena provide us with experimentally feasible means to study the nontrivial topological sector of quantum chromodynamics, the possible parity violation of strong interaction at high temperature, and the subatomic spintronics of quark-gluon plasma. These studies, both in theory and in experiments, are strongly connected with other subfields of physics such as condensed matter physics, astrophysics, and cold atomic physics, and thus form an emerging interdisciplinary research area. We give an introduction to the aforementioned phenomena induced by the EM field and vorticity and an overview of the current status of their experimental research in heavy-ion collisions. We also briefly discuss spin hydrodynamics as well as chiral and spin kinetic theories.
In a noncentral heavy-ion collision, the two colliding nuclei have finite angular momentum in the direction perpendicular to the reaction plane. After the collision, a fraction of the total angular momentum is retained in the produced hot quark-gluon matter and is manifested in the form of fluid shear. Such fluid shear creates finite flow vorticity. We study some features of such generated vorticity, including its strength, beam energy dependence, centrality dependence, and spatial distribution.
We study the event-by-event generation of flow vorticity in RHIC Au + Au collisions and LHC Pb + Pb collisions by using the HIJING model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا