Bulk mesons propagating in chiral and gluon condensates, in a gravity background, are scrutinized in holographic soft wall AdS/QCD models, involving deformed dilatonic backgrounds. The configurational entropy of the $a_1$ axial vector, the $rho$ vector, and the $f_0$ scalar meson families is then computed. Two types of informational entropic Regge trajectories are then obtained, where the logarithm of the mesons configurational entropy is expressed in terms of both the experimental meson mass spectra and their excitation number as well. Therefore the mass spectra of the next generation of elements in each meson family, besides being predicted as eigenvalues of Schrodinger-like equations, are estimated with better accuracy and discussed.