Do you want to publish a course? Click here

Scattering of cold $^4$He on $^4$He$-^{6,7}$Li and $^4$He$-^{23}$Na molecules

77   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We predict $s-$wave elastic cross-sections $sigma$ for low-energy atom-molecule collisions with kinetic energies up to 40 mK, for the $^4$He collision with weakly bound diatomic molecules formed by $^4$He with $^7$Li, $^6$Li and $^{23}$Na. Our scattering calculations are performed by using diatomic and triatomic molecular binding energies obtained from several available realistic models as input in a renormalized zero-range model, as well as a finite-range one-term separable potential in order to quantify the relevance of range corrections to our predictions. Of particular relevance for possible experimental realization, we show the occurrence of a zero in $sigma$ for the collision of cold $^4$He on $^4$He$-^{23}$Na molecule below 20 mK. Also our results for the elastic collision $^4$He on $^4$He$-^{6,7}$Li molecules suggest that $sigma$ varies considerably for the realistic models studied. As the chosen molecules are weakly bound and the scattering energies are very low, our results are interpreted on the light of the Efimov physics, which explains the model independent and robustness of our predictions, despite some sensitivity on the potential range.



rate research

Read More

271 - E. Krotscheck , R. Zillich 1998
We develop a first principles, microscopic theory of impurity atom scattering from inhomogeneous quantum liquids such as adsorbed films, slabs, or clusters of He-4. The theory is built upon a quantitative, microscopic description of the ground state of both the host liquid as well as the impurity atom. Dynamic effects are treated by allowing all ground-state correlation functions to be time-dependent. Our description includes both the elastic and inelastic coupling of impurity motion to the excitations of the host liquid. As a specific example, we study the scattering of He-3 atoms from adsorbed He-4 films. We examine the dependence of ``quantum reflection on the substrate, and the consequences of impurity bound states, resonances, and background excitations for scattering properties. A thorough analysis of the theoretical approach and the physical circumstances point towards the essential role played by inelastic processes which determine almost exclusively the reflection probabilities. The coupling to impurity resonances within the film leads to a visible dependence of the reflection coefficient on the direction of the impinging particle.
Four light-mass nuclei are considered by an effective two-body clusterisation method; $^6$Li as $^2$H$+^4$He, $^7$Li as $^3$H$+^4$He, $^7$Be as $^3$He$+^4$He, and $^8$Be as $^4$He$+^4$He. The low-energy spectrum of each is determined from single-channel Lippmann-Schwinger equations, as are low-energy elastic scattering cross sections for the $^2$H$+^4$He system. These are presented at many angles and energies for which there are data. While some of these systems may be more fully described by many-body theories, this work establishes that a large amount of data may be explained by these two-body clusterisations.
Mixed $^3$He-$^4$He droplets created by hydrodynamic instability of a cryogenic fluid-jet may acquire angular momentum during their passage through the nozzle of the experimental apparatus. These free-standing droplets cool down to very low temperatures undergoing isotopic segregation, developing a nearly pure $^3$He crust surrounding a very $^4$He-rich superfluid core. Here, the stability and appearance of rotating mixed helium droplets are investigated using Density Functional Theory for an isotopic composition that highlights, with some marked exceptions related to the existence of the superfluid inner core, the analogies with viscous rotating droplets.
We present a reliable double-folding (DF) model for $^{4}$He-nucleus scattering, using the Melbourne $g$-matrix nucleon-nucleon interaction that explains nucleon-nucleus scattering with no adjustable parameter. In the DF model, only the target density is taken as the local density in the Melbourne $g$-matrix. For $^{4}$He elastic scattering from $^{58}$Ni and $^{208}$Pb targets in a wide range of incident energies from 20~MeV/nucleon to 200~MeV/nucleon, the DF model with the target-density approximation (TDA) yields much better agreement with the experimental data than the usual DF model with the frozen-density approximation in which the sum of projectile and target densities is taken as the local density. We also discuss the relation between the DF model with the TDA and the conventional folding model in which the nucleon-nucleus potential is folded with the $^{4}$He density.
Ab initio computed interaction forces are employed in order to describe the microsolvation of the A$_2^+(^2Sigma)$ (A=Li,Na,K) molecular ion in $^4$He clusters of small variable size. The minimum energy structures are obtained by performing energy minimization based on a genetic algorithm approach. The symmetry features of the collocation of solvent adatoms around the dimeric cation are analyzed in detail, showing that the selective growth of small clusters around the two sides of the ion during the solvation process is a feature common to all three dopants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا