Do you want to publish a course? Click here

High-accuracy mass, spin, and recoil predictions of generic black-hole merger remnants

138   0   0.0 ( 0 )
 Added by Vijay Varma
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present accurate fits for the remnant properties of generically precessing binary black holes, trained on large banks of numerical-relativity simulations. We use Gaussian process regression to interpolate the remnant mass, spin, and recoil velocity in the 7-dimensional parameter space of precessing black-hole binaries with mass ratios $qleq2$, and spin magnitudes $chi_1,chi_2leq0.8$. For precessing systems, our errors in estimating the remnant mass, spin magnitude, and kick magnitude are lower than those of existing fitting formulae by at least an order of magnitude (improvement is also reported in the extrapolated region at high mass ratios and spins). In addition, we also model the remnant spin and kick directions. Being trained directly on precessing simulations, our fits are free from ambiguities regarding the initial frequency at which precessing quantities are defined. We also construct a model for remnant properties of aligned-spin systems with mass ratios $qleq8$, and spin magnitudes $chi_1,chi_2leq0.8$. As a byproduct, we also provide error estimates for all fitted quantities, which can be consistently incorporated into current and future gravitational-wave parameter-estimation analyses. Our model(s) are made publicly available through a fast and easy-to-use Python module called surfinBH.



rate research

Read More

231 - Vijay Varma , Maximiliano Isi , 2020
Gravitational waves carry energy, angular momentum, and linear momentum. In generic binary black hole mergers, the loss of linear momentum imparts a recoil velocity, or a kick, to the remnant black hole. We exploit recent advances in gravitational waveform and remnant black hole modeling to extract information about the kick from the gravitational wave signal. Kick measurements such as these are astrophysically valuable, enabling independent constraints on the rate of second-generation mergers. Further, we show that kicks must be factored into future ringdown tests of general relativity with third-generation gravitational wave detectors to avoid systematic biases. We find that, although little information can be gained about the kick for existing gravitational wave events, interesting measurements will soon become possible as detectors improve. We show that, once LIGO and Virgo reach their design sensitivities, we will reliably extract the kick velocity for generically precessing binaries--including the so-called superkicks, reaching up to 5000 km/s.
The radiation of linear momentum imparts a recoil (or kick) to the center of mass of a merging black hole binary system. Recent numerical relativity calculations have shown that eccentricity can lead to an approximate 25% increase in recoil velocities for equal-mass, spinning binaries with spins lying in the orbital plane (superkick configurations) [U Sperhake et al. Phys. Rev. D 101 (2020) 024044 (arXiv:1910.01598)]. Here we investigate the impact of nonzero eccentricity on the kick magnitude and gravitational-wave emission of nonspinning, unequal-mass black hole binaries. We confirm that nonzero eccentricities at merger can lead to kicks which are larger by up to ~25% relative to the quasicircular case. We also find that the kick velocity $v$ has an oscillatory dependence on eccentricity, that we interpret as a consequence of changes in the angle between the infall direction at merger and the apoapsis (or periapsis) direction.
Binary black holes (BBHs) are thought to form in different environments, including the galactic field and (globular, nuclear, young and open) star clusters. Here, we propose a method to estimate the fingerprints of the main BBH formation channels associated with these different environments. We show that the metallicity distribution of galaxies in the local Universe along with the relative amount of mergers forming in the field or in star clusters determine the main properties of the BBH population. Our fiducial model predicts that the heaviest merger to date, GW170729, originated from a progenitor that underwent 2--3 merger events in a dense star cluster, possibly a galactic nucleus. The model predicts that at least one merger remnant out of 100 BBH mergers in the local Universe has mass $90 < M_{rm rem}/ {rm ~M}_odot leq{} 110$, and one in a thousand can reach a mass as large as $M_{rm rem} gtrsim 250$ M$_odot$. Such massive black holes would bridge the gap between stellar-mass and intermediate-mass black holes. The relative number of low- and high-mass BBHs can help us unravelling the fingerprints of different formation channels. Based on the assumptions of our model, we expect that isolated binaries are the main channel of BBH merger formation if $sim 70%$ of the whole BBH population has remnants masses $<50$ M$_odot$, whereas $gtrsim{}6$% of remnants with masses $>75$ M$_odot$ point to a significant sub-population of dynamically formed BBH binaries.
We present results from fully nonlinear simulations of unequal mass binary black holes plunging from close separations well inside the innermost stable circular orbit with mass ratios q = M_1/M_2 = {1,0.85,0.78,0.55,0.32}, or equivalently, with reduced mass parameters $eta=M_1M_2/(M_1+M_2)^2 = {0.25, 0.248, 0.246, 0.229, 0.183}$. For each case, the initial binary orbital parameters are chosen from the Cook-Baumgarte equal-mass ISCO configuration. We show waveforms of the dominant l=2,3 modes and compute estimates of energy and angular momentum radiated. For the plunges from the close separations considered, we measure kick velocities from gravitational radiation recoil in the range 25-82 km/s. Due to the initial close separations our kick velocity estimates should be understood as a lower bound. The close configurations considered are also likely to contain significant eccentricities influencing the recoil velocity.
On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_odot$ and $29^{+4}_{-4} M_odot$; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be $<0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $610$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black hole of $62^{+4}_{-4} M_odot$ and spin $0.67^{+0.05}_{-0.07}$. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا