We analyze a mathematical model of elastic dislocations with applications to geophysics, where by an elastic dislocation we mean an open, oriented Lipschitz surface in the interior of an elastic solid, across which there is a discontinuity of the displacement. We model the Earth as an infinite, isotropic, inhomogeneous, elastic medium occupying a half space, and assume only Lipschitz continuity of the Lame parameters. We study the well posedness of very weak solutions to the forward problem of determining the displacement by imposing traction-free boundary conditions at the surface, continuity of the traction and a given jump on the displacement across the fault. We employ suitable weighted Sobolev spaces for the analysis. We utilize the well posedness of the forward problem and unique-continuation arguments to establish uniqueness in the inverse problem of determining the dislocation surface and the displacement jump from measuring the displacement at the surface of the Earth. Uniqueness holds for tangential or normal jumps and under some geometric conditions on the surface.