Do you want to publish a course? Click here

SG-FCN: A Motion and Memory-Based Deep Learning Model for Video Saliency Detection

70   0   0.0 ( 0 )
 Added by Ziqi Zhou
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Data-driven saliency detection has attracted strong interest as a result of applying convolutional neural networks to the detection of eye fixations. Although a number of imagebased salient object and fixation detection models have been proposed, video fixation detection still requires more exploration. Different from image analysis, motion and temporal information is a crucial factor affecting human attention when viewing video sequences. Although existing models based on local contrast and low-level features have been extensively researched, they failed to simultaneously consider interframe motion and temporal information across neighboring video frames, leading to unsatisfactory performance when handling complex scenes. To this end, we propose a novel and efficient video eye fixation detection model to improve the saliency detection performance. By simulating the memory mechanism and visual attention mechanism of human beings when watching a video, we propose a step-gained fully convolutional network by combining the memory information on the time axis with the motion information on the space axis while storing the saliency information of the current frame. The model is obtained through hierarchical training, which ensures the accuracy of the detection. Extensive experiments in comparison with 11 state-of-the-art methods are carried out, and the results show that our proposed model outperforms all 11 methods across a number of publicly available datasets.



rate research

Read More

Video smoke detection is a promising fire detection method especially in open or large spaces and outdoor environments. Traditional video smoke detection methods usually consist of candidate region extraction and classification, but lack powerful characterization for smoke. In this paper, we propose a novel video smoke detection method based on deep saliency network. Visual saliency detection aims to highlight the most important object regions in an image. The pixel-level and object-level salient convolutional neural networks are combined to extract the informative smoke saliency map. An end-to-end framework for salient smoke detection and existence prediction of smoke is proposed for application in video smoke detection. The deep feature map is combined with the saliency map to predict the existence of smoke in an image. Initial and augmented dataset are built to measure the performance of frameworks with different design strategies. Qualitative and quantitative analysis at frame-level and pixel-level demonstrate the excellent performance of the ultimate framework.
Over the past decade, many computational saliency prediction models have been proposed for 2D images and videos. Considering that the human visual system has evolved in a natural 3D environment, it is only natural to want to design visual attention models for 3D content. Existing monocular saliency models are not able to accurately predict the attentive regions when applied to 3D image/video content, as they do not incorporate depth information. This paper explores stereoscopic video saliency prediction by exploiting both low-level attributes such as brightness, color, texture, orientation, motion, and depth, as well as high-level cues such as face, person, vehicle, animal, text, and horizon. Our model starts with a rough segmentation and quantifies several intuitive observations such as the effects of visual discomfort level, depth abruptness, motion acceleration, elements of surprise, size and compactness of the salient regions, and emphasizing only a few salient objects in a scene. A new fovea-based model of spatial distance between the image regions is adopted for considering local and global feature calculations. To efficiently fuse the conspicuity maps generated by our method to one single saliency map that is highly correlated with the eye-fixation data, a random forest based algorithm is utilized. The performance of the proposed saliency model is evaluated against the results of an eye-tracking experiment, which involved 24 subjects and an in-house database of 61 captured stereoscopic videos. Our stereo video database as well as the eye-tracking data are publicly available along with this paper. Experiment results show that the proposed saliency prediction method achieves competitive performance compared to the state-of-the-art approaches.
Saliency prediction for Standard Dynamic Range (SDR) videos has been well explored in the last decade. However, limited studies are available on High Dynamic Range (HDR) Visual Attention Models (VAMs). Considering that the characteristic of HDR content in terms of dynamic range and color gamut is quite different than those of SDR content, it is essential to identify the importance of different saliency attributes of HDR videos for designing a VAM and understand how to combine these features. To this end we propose a learning-based visual saliency fusion method for HDR content (LVBS-HDR) to combine various visual saliency features. In our approach various conspicuity maps are extracted from HDR data, and then for fusing conspicuity maps, a Random Forests algorithm is used to train a model based on the collected data from an eye-tracking experiment. Performance evaluations demonstrate the superiority of the proposed fusion method against other existing fusion methods.
119 - Yizhi Liu , Xiaoyan Gu , Lei Huang 2019
Content-based adult video detection plays an important role in preventing pornography. However, existing methods usually rely on single modality and seldom focus on multi-modality semantics representation. Addressing at this problem, we put forward an approach of analyzing periodicity and saliency for adult video detection. At first, periodic patterns and salient regions are respective-ly analyzed in audio-frames and visual-frames. Next, the multi-modal co-occurrence semantics is described by combining audio periodicity with visual saliency. Moreover, the performance of our approach is evaluated step by step. Experimental results show that our approach obviously outper-forms some state-of-the-art methods.
Anomaly detection in videos is a problem that has been studied for more than a decade. This area has piqued the interest of researchers due to its wide applicability. Because of this, there has been a wide array of approaches that have been proposed throughout the years and these approaches range from statistical-based approaches to machine learning-based approaches. Numerous surveys have already been conducted on this area but this paper focuses on providing an overview on the recent advances in the field of anomaly detection using Deep Learning. Deep Learning has been applied successfully in many fields of artificial intelligence such as computer vision, natural language processing and more. This survey, however, focuses on how Deep Learning has improved and provided more insights to the area of video anomaly detection. This paper provides a categorization of the different Deep Learning approaches with respect to their objectives. Additionally, it also discusses the commonly used datasets along with the common evaluation metrics. Afterwards, a discussion synthesizing all of the recent approaches is made to provide direction and possible areas for future research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا