Do you want to publish a course? Click here

Correcting for Fibre Assignment Incompleteness in the DESI Bright Galaxy Survey

165   0   0.0 ( 0 )
 Added by Alexander Smith
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey (BGS) will be a survey of bright, low redshift galaxies, which is planned to cover an area of ~14,000 sq deg in 3 passes. Each pass will cover the survey area with ~2000 pointings, each of area ~8 sq deg. The BGS is currently proposed to consist of a bright high priority sample to an r-band magnitude limit r ~ 19.5, with a fainter low priority sample to r ~ 20. The geometry of the DESI fibre positioners in the focal plane of the telescope affects the completeness of the survey, and has a non-trivial impact on clustering measurements. Using a BGS mock catalogue, we show that completeness due to fibre assignment primarily depends on the surface density of galaxies. Completeness is high (>95%) in low density regions, but very low (<10%) in the centre of massive clusters. We apply the pair inverse probability (PIP) weighting correction to clustering measurements from a BGS mock which has been through the fibre assignment algorithm. This method is only unbiased if it is possible to observe every galaxy pair. To facilitate this, we randomly promote a small fraction of the fainter sample to be high priority, and dither the set of tile positions by a small angle. We show that inverse pair weighting combined with angular upweighting provides an unbiased correction to galaxy clustering measurements for the complete 3 pass survey, and also after 1 pass, which is highly incomplete.



rate research

Read More

The Dark Energy Spectroscopic Instrument (DESI) will execute a nearly magnitude-limited survey of low redshift galaxies ($0.05 leq z leq 0.4$, median $z approx 0.2$). Clustering analyses of this Bright Galaxy Survey (BGS) will yield the most precise measurements to date of baryon acoustic oscillations and redshift-space distortions at low redshift. DESI BGS will comprise two target classes: (i) BRIGHT ($r<19.5$~mag), and (ii) FAINT ($19.5<r<20$~mag). Here we present a summary of the star-galaxy separation, and different photometric and geometrical masks, used in BGS to reduce the number of spurious targets. The selection results in a total density of $sim 800$ objects/deg$^2$ for the BRIGHT and $sim 600$ objects/deg$^2$ for the FAINT selections.A full characterization of the BGS selection can be found in Ruiz-Macias et al. (2020).
Context. Several new multi-object spectrographs are currently planned or under construction that are capable of observing thousands of Galactic and extragalactic objects simultaneously. Aims. In this paper we present a probabilistic fibre-to-target assignment algorithm that takes spectrograph targeting constraints into account and is capable of dealing with multiple concurrent surveys. We present this algorithm using the 4-metre Multi-Object Spectroscopic Telescope (4MOST) as an example. Methods. The key idea of the proposed algorithm is to assign probabilities to fibre-target pairs. The assignment of probabilities takes the fibre positioners capabilities and constraints into account. Additionally, these probabilities include requirements from surveys and take the required exposure time, number density variation, and angular clustering of targets across each survey into account. The main advantage of a probabilistic approach is that it allows for accurate and easy computation of the target selection function for the different surveys, which involves determining the probability of observing a target, given an input catalogue. Results. The probabilistic fibre-to-target assignment allows us to achieve maximally uniform completeness within a single field of view. The proposed algorithm maximises the fraction of successfully observed targets whilst minimising the selection bias as a function of exposure time. In the case of several concurrent surveys, the algorithm maximally satisfies the scientific requirements of each survey and no specific survey is penalised or prioritised. Conclusions. The algorithm presented is a proposed solution for the 4MOST project that allows for an unbiased targeting of many simultaneous surveys. With some modifications, the algorithm may also be applied to other multi-object spectroscopic surveys.
We publish the survey for galaxies in 20 fields containing ultraviolet bright quasars (with z_em 0.1 to 0.5) that can be used to study the association between galaxies and absorption systems from the low-z intergalactic medium (IGM). The survey is magnitude limited (R~19.5 mag) and highly complete out to 10 from the quasar in each field. It was designed to detect dwarf galaxies (L ~ 0.1 L*) at an impact parameter rho 1Mpc (z=0.1) from a quasar. The complete sample (all 20 fields) includes R-band photometry for 84718 sources and confirmed redshifts for 2800 sources. This includes 1198 galaxies with 0.005 < z < (z_em - 0.01) at a median redshift of 0.18, which may associated with IGM absorption lines. All of the imaging was acquired with cameras on the Swope 40 telescope and the spectra were obtained via slitmask observations using the WFCCD spectrograph on the Dupont 100 telescope at Las Campanas Observatory (LCO). This paper describes the data reduction, imaging analysis, photometry, and spectral analysis of the survey. We tabulate the principal measurements for all sources in each field and provide the spectroscopic dataset online.
We use data from the DESI Legacy Survey imaging to probe the galaxy density field in tomographic slices covering the redshift range $0<z<0.8$. After careful consideration of completeness corrections and galactic cuts, we obtain a sample of $4.9times 10^7$ galaxies covering 17 739 deg$^2$. We derive photometric redshifts with precision $sigma_z/(1+z)=0.012 - 0.015$, and compare with alternative estimates. Cross-correlation of the tomographic galaxy maps with Planck maps of CMB temperature and lensing convergence probe the growth of structure since $z=0.8$. The signals are compared with a fiducial Planck $Lambda$CDM model, and require an overall scaling in amplitude of $A_kappa=0.901pm 0.026$ for the lensing cross-correlation and $A_{rm ISW} = 0.984 pm 0.349$ for the temperature cross-correlation, interpreted as the Integrated Sachs-Wolfe effect. The ISW amplitude is consistent with the fiducial $Lambda$CDM prediction, but lies significantly below the prediction of the AvERA model of Racz et al. (2017), which has been proposed as an alternative explanation for cosmic acceleration. Within $Lambda$CDM, our low amplitude for the lensing cross-correlation requires a reduction either in fluctuation normalization or in matter density compared to the Planck results, so that $Omega_m^{0.78}sigma_8=0.297pm 0.009$. In combination with the total amplitude of CMB lensing, this favours a shift mainly in density: $Omega_m=0.274pm0.024$. We discuss the consistency of this figure with alternative evidence. A conservative compromise between lensing and primary CMB constraints would require $Omega_m=0.296pm0.006$, where the 95% confidence regions of both probes overlap.
We present a description of the Australian Dark Energy Survey (OzDES) and summarise the results from its six years of operations. Using the 2dF fibre positioner and AAOmega spectrograph on the 3.9-metre Anglo-Australian Telescope, OzDES has monitored 771 AGN, classified hundreds of supernovae, and obtained redshifts for thousands of galaxies that hosted a transient within the 10 deep fields of the Dark Energy Survey. We also present the second OzDES data release, containing the redshifts of almost 30,000 sources, some as faint as $r_{mathrm AB}=24$ mag, and 375,000 individual spectra. These data, in combination with the time-series photometry from the Dark Energy Survey, will be used to measure the expansion history of the Universe out to $zsim1.2$ and the masses of hundreds of black holes out to $zsim4$. OzDES is a template for future surveys that combine simultaneous monitoring of targets with wide-field imaging cameras and wide-field multi-object spectrographs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا