Do you want to publish a course? Click here

Structural distortion and incommensurate noncollinear magnetism in EuAg4As2

148   0   0.0 ( 0 )
 Added by Ni Ni
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Layered pnictide materials have provided a fruitful platform to study various emergent phenomena, including superconductivity, magnetism, charge density waves, etc. Here we report the observation of structural distortion and noncollinear magnetism in layered pnictide EuAg$_4$As$_2$ via transport, magnetization, single crystal X-ray and neutron diffraction data. EuAg$_4$As$_2$ single crystal shows a structural distortion at 120 K, where two sets of superlattice peaks with the propagation vectors of $q_1=pm$(0, 0.25, 0.5) and $q_2=pm$(0.25, 0, 1) emerge. Between 9 K to 15 K, the hexagonal Eu$^{2+}$ sub-lattice enters an unpinned state, with magnetic Bragg reflections pictured as circular-sectors. Below 9 K, it orders in an incommensurate noncollinear antiferromagnetic state with a well-defined propagation wavevector of (0, 0.1, 0.12), where the magnetic structure is helical along the $c$ axis and cycloidal along the $b$ axis with a moment of 6.4 $mu_B$/Eu$^{2+}$. Furthermore, rich magnetic phases under magnetic fields, large magnetoresistance, and strong coupling between charge carriers and magnetism in EuAg$_4$As$_2$ are revealed.



rate research

Read More

Neutron scattering studies on powder and single crystals have provided new evidences for unconventional magnetism in Cu2Te2O5Cl2. The compound is built from tetrahedral clusters of S=1/2 Cu2+ spins located on a tetragonal lattice. Magnetic ordering, emerging at TN=18.2 K, leads to a very complex multi-domain, most likely degenerate, ground state, which is characterized by an incommensurate (ICM) wave vector k ~ [0.15, 0.42,1/2]. The Cu2+ ions carry a magnetic moment of 0.67(1) mB/ Cu2+ at 1.5 K and form a four helices spin arrangement with two canted pairs within the tetrahedra. A domain redistribution is observed when a magnetic field is applied in the tetragonal plane (Hc≈0.5 T), but not for H||c up to 4 T. The excitation spectrum is characterized by two well-defined modes, one completely dispersionless at 6.0 meV, the other strongly dispersing to a gap of 2 meV. The reason for such complex ground state and spin excitations may be geometrical frustration of the Cu2+ spins within the tetrahedra, intra- and inter-tetrahedral couplings having similar strengths and strong Dzyaloshinski-Moriya anisotropy. Candidates for the dominant intra- and inter-tetrahedral interactions are proposed.
210 - Shan Wu , W. A. Phelan , L. Liu 2017
Two phase transitions in the tetragonal strongly correlated electron system CeNiAsO were probed by neutron scattering and zero field muon spin rotation. For $T <T_{N1}$ = 8.7(3) K, a second order phase transition yields an incommensurate spin density wave with wave vector $textbf{k} = (0.44(4), 0, 0)$. For $T < T_{N2}$ = 7.6(3) K, we find co-planar commensurate order with a moment of $0.37(5)~mu_B$, reduced to $30 %$ of the saturation moment of the $|pmfrac{1}{2}rangle$ Kramers doublet ground state, which we establish by inelastic neutron scattering. Muon spin rotation in $rm CeNiAs_{1-x}P_xO$ shows the commensurate order only exists for x $le$ 0.1 so the transition at $x_c$ = 0.4(1) is from an incommensurate longitudinal spin density wave to a paramagnetic Fermi liquid.
Anisotropic multiferroic properties of SrMnGe2O6 pyroxene single crystals were systematically investigated by means of magnetization, heat capacity, pyroelectric current measurement and elastic and inelastic neutron scattering experiments. Single crystal neutron diffraction allows us to unambiguously reveal the presence of two incommensurate magnetic orderings: a non-polar amplitude-modulated collinear sinusoidal magnetic structure emerges at TN1=4.36(2)K followed by a polar elliptical cycloidal spin structure below TN2=4.05(2)K. Pyroelectric current measurements on single crystal confirm the appearance of a spontaneous polarization within the (ac) plane below TN2 associated with the latter magnetic symmetry through extended Dzyaloshinsky-Moriya mechanism. The magnetic phase diagram was calculated considering the three isotropic exchange couplings relevant in this system. The magnetic excitations spectra of SrMnGe2O6 measured by inelastic neutron scattering were successfully modeled using a set of exchange interactions consistent with this phase diagram.
Emergent relativistic quasiparticles in Weyl semimetals are the source of exotic electronic properties such as surface Fermi arcs, the anomalous Hall effect, and negative magnetoresistance, all observed in real materials. Whereas these phenomena highlight the effect of Weyl fermions on the electronic transport properties, less is known about what collective phenomena they may support. Here, we report a new Weyl semimetal, NdAlSi that offers an example. Using neutron diffraction, we report a long-wavelength magnetic order in NdAlSi whose periodicity is linked to the nesting vector between two topologically non-trivial Fermi pockets, which we characterize using density functional theory and quantum oscillation measurements. Our work provides a rare example of Weyl fermions driving collective magnetism.
We have used resonant x-ray diffraction to develop a detailed description of antiferromagnetic ordering in epitaxial superlattices based on two-unit-cell thick layers of the strongly correlated metal LaNiO3. We also report reference experiments on thin films of PrNiO3 and NdNiO3. The resulting data indicate a spiral state whose polarization plane can be controlled by adjusting the Ni d-orbital occupation via two independent mechanisms: epitaxial strain and quantum confinement of the valence electrons. The data are discussed in the light of recent theoretical predictions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا