Twist-bend coupling and the statistical mechanics of the twistable worm-like chain model of DNA: perturbation theory and beyond


Abstract in English

The simplest model of DNA mechanics describes the double helix as a continuous rod with twist and bend elasticity. Recent work has discussed the relevance of a little-studied coupling $G$ between twisting and bending, known to arise from the groove asymmetry of the DNA double helix. Here, the effect of $G$ on the statistical mechanics of long DNA molecules subject to applied forces and torques is investigated. We present a perturbative calculation of the effective torsional stiffness $C_text{eff}$ for small twist-bend coupling. We find that the bare $G$ is screened by thermal fluctuations, in the sense that the low-force, long-molecule effective free energy is that of a model with $G=0$, but with long-wavelength bending and twisting rigidities that are shifted by $G$-dependent amounts. Using results for torsional and bending rigidities for freely-fluctuating DNA, we show how our perturbative results can be extended to a non-perturbative regime. These results are in excellent agreement with numerical calculations for Monte Carlo triad and molecular dynamics oxDNA models, characterized by different degrees of coarse-graining, validating the perturbative and non-perturbative analyses. While our theory is in generally-good quantitative agreement with experiment, the predicted torsional stiffness does systematically deviate from experimental data, suggesting that there are as-yet-uncharacterized aspects of DNA twisting-stretching mechanics relevant to low-force, long-molecule mechanical response, which are not captured by widely-used coarse-grained models.

Download