Do you want to publish a course? Click here

Almost positive links are strongly quasipositive

78   0   0.0 ( 0 )
 Added by Lukas Lewark
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We prove that any link admitting a diagram with a single negative crossing is strongly quasipositive. This answers a question of Stoimenows in the (strong) positive. As a second main result, we give simple and complete characterizations of link diagrams with quasipositive canonical surface (the surface produced by Seiferts algorithm). As applications, we determine which prime knots up to 13 crossings are strongly quasipositive, and we confirm the following conjecture for knots that have a canonical surface realizing their genus: a knot is strongly quasipositive if and only if the Bennequin inequality is an equality.



rate research

Read More

We give a new, conceptually simpler proof of the fact that knots in $S^3$ with positive L-space surgeries are fibered and strongly quasipositive. Our motivation for doing so is that this new proof uses comparatively little Heegaard Floer-specific machinery and can thus be translated to other forms of Floer homology. We carried this out for instanton Floer homology in our recent article Instantons and L-space surgeries, and used it to generalize Kronheimer and Mrowkas results on $SU(2)$ representations of fundamental groups of Dehn surgeries.
153 - Tetsuya Ito 2020
We discuss when homogeneous quasipositive links are positive. In particular, we show that a homogeneous diagram of a quasipositive link whose number of Seifert circles is equal to the braid index is a positive diagram.
Every $L$-space knot is fibered and strongly quasi-positive, but this does not hold for $L$-space links. In this paper, we use the so called H-function, which is a concordance link invariant, to introduce a subfamily of fibered strongly quasi-positive $L$-space links. Furthermore, we present an infinite family of $L$-space links which are not quasi-positive.
63 - Tetsuya Ito 2020
For a positive braid link, a link represented as a closed positive braids, we determine the first few coefficients of its HOMFLY polynomial in terms of geometric invariants such as, the maximum euler characteristics, the number of split factors, and the number of prime factors. Our results give improvements of known results for Conway and Jones polynomial of positive braid links. In Appendix, we present a simpler proof of theorem of Cromwell, a positive braid diagram represent composite link if and only if the the diagram is composite.
We give asymptotically sharp upper bounds for the Khovanov width and the dealternation number of positive braid links, in terms of their crossing number. The same braid-theoretic technique, combined with Ozsvath, Stipsicz, and Szabos Upsilon invariant, allows us to determine the exact cobordism distance between torus knots with braid index two and six.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا