Do you want to publish a course? Click here

Scene Text Recognition from Two-Dimensional Perspective

115   0   0.0 ( 0 )
 Added by Minghui Liao
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Inspired by speech recognition, recent state-of-the-art algorithms mostly consider scene text recognition as a sequence prediction problem. Though achieving excellent performance, these methods usually neglect an important fact that text in images are actually distributed in two-dimensional space. It is a nature quite different from that of speech, which is essentially a one-dimensional signal. In principle, directly compressing features of text into a one-dimensional form may lose useful information and introduce extra noise. In this paper, we approach scene text recognition from a two-dimensional perspective. A simple yet effective model, called Character Attention Fully Convolutional Network (CA-FCN), is devised for recognizing the text of arbitrary shapes. Scene text recognition is realized with a semantic segmentation network, where an attention mechanism for characters is adopted. Combined with a word formation module, CA-FCN can simultaneously recognize the script and predict the position of each character. Experiments demonstrate that the proposed algorithm outperforms previous methods on both regular and irregular text datasets. Moreover, it is proven to be more robust to imprecise localizations in the text detection phase, which are very common in practice.



rate research

Read More

Scene text recognition has been an important, active research topic in computer vision for years. Previous approaches mainly consider text as 1D signals and cast scene text recognition as a sequence prediction problem, by feat of CTC or attention based encoder-decoder framework, which is originally designed for speech recognition. However, different from speech voices, which are 1D signals, text instances are essentially distributed in 2D image spaces. To adhere to and make use of the 2D nature of text for higher recognition accuracy, we extend the vanilla CTC model to a second dimension, thus creating 2D-CTC. 2D-CTC can adaptively concentrate on most relevant features while excluding the impact from clutters and noises in the background; It can also naturally handle text instances with various forms (horizontal, oriented and curved) while giving more interpretable intermediate predictions. The experiments on standard benchmarks for scene text recognition, such as IIIT-5K, ICDAR 2015, SVP-Perspective, and CUTE80, demonstrate that the proposed 2D-CTC model outperforms state-of-the-art methods on the text of both regular and irregular shapes. Moreover, 2D-CTC exhibits its superiority over prior art on training and testing speed. Our implementation and models of 2D-CTC will be made publicly available soon later.
The pursuit of high performance on public benchmarks has been the driving force for research in scene text recognition, and notable progress has been achieved. However, a close investigation reveals a startling fact that the state-of-the-art methods perform well on images with words within vocabulary but generalize poorly to images with words outside vocabulary. We call this phenomenon vocabulary reliance. In this paper, we establish an analytical framework to conduct an in-depth study on the problem of vocabulary reliance in scene text recognition. Key findings include: (1) Vocabulary reliance is ubiquitous, i.e., all existing algorithms more or less exhibit such characteristic; (2) Attention-based decoders prove weak in generalizing to words outside vocabulary and segmentation-based decoders perform well in utilizing visual features; (3) Context modeling is highly coupled with the prediction layers. These findings provide new insights and can benefit future research in scene text recognition. Furthermore, we propose a simple yet effective mutual learning strategy to allow models of two families (attention-based and segmentation-based) to learn collaboratively. This remedy alleviates the problem of vocabulary reliance and improves the overall scene text recognition performance.
Scene text recognition (STR) task has a common practice: All state-of-the-art STR models are trained on large synthetic data. In contrast to this practice, training STR models only on fewer real labels (STR with fewer labels) is important when we have to train STR models without synthetic data: for handwritten or artistic texts that are difficult to generate synthetically and for languages other than English for which we do not always have synthetic data. However, there has been implicit common knowledge that training STR models on real data is nearly impossible because real data is insufficient. We consider that this common knowledge has obstructed the study of STR with fewer labels. In this work, we would like to reactivate STR with fewer labels by disproving the common knowledge. We consolidate recently accumulated public real data and show that we can train STR models satisfactorily only with real labeled data. Subsequently, we find simple data augmentation to fully exploit real data. Furthermore, we improve the models by collecting unlabeled data and introducing semi- and self-supervised methods. As a result, we obtain a competitive model to state-of-the-art methods. To the best of our knowledge, this is the first study that 1) shows sufficient performance by only using real labels and 2) introduces semi- and self-supervised methods into STR with fewer labels. Our code and data are available: https://github.com/ku21fan/STR-Fewer-Labels
Over the past few years, several new methods for scene text recognition have been proposed. Most of these methods propose novel building blocks for neural networks. These novel building blocks are specially tailored for the task of scene text recognition and can thus hardly be used in any other tasks. In this paper, we introduce a new model for scene text recognition that only consists of off-the-shelf building blocks for neural networks. Our model (KISS) consists of two ResNet based feature extractors, a spatial transformer, and a transformer. We train our model only on publicly available, synthetic training data and evaluate it on a range of scene text recognition benchmarks, where we reach state-of-the-art or competitive performance, although our model does not use methods like 2D-attention, or image rectification.
Scene text recognition (STR) is very challenging due to the diversity of text instances and the complexity of scenes. The community has paid increasing attention to boost the performance by improving the pre-processing image module, like rectification and deblurring, or the sequence translator. However, another critical module, i.e., the feature sequence extractor, has not been extensively explored. In this work, inspired by the success of neural architecture search (NAS), which can identify better architectures than human-designed ones, we propose automated STR (AutoSTR) to search data-dependent backbones to boost text recognition performance. First, we design a domain-specific search space for STR, which contains both choices on operations and constraints on the downsampling path. Then, we propose a two-step search algorithm, which decouples operations and downsampling path, for an efficient search in the given space. Experiments demonstrate that, by searching data-dependent backbones, AutoSTR can outperform the state-of-the-art approaches on standard benchmarks with much fewer FLOPS and model parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا