Do you want to publish a course? Click here

Dynamical Quantum Phase Transitions in Extended Toric-Code Models

73   0   0.0 ( 0 )
 Added by Vatshal Srivastav
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the nonequilibrium dynamics of the extended toric code model (both ordered and disordered) to probe the existence of the dynamical quantum phase transitions (DQPTs). We show that in the case of the ordered toric code model, the zeros of Loschmidt overlap (generalized partition function) occur at critical times when DQPTs occur, which is confirmed by the nonanalyticities in the dynamical counter-part of the free-energy density. Moreover, we show that DQPTs occur for any non-zero field strength if the initial state is the excited state of the toric code model. In the disordered case, we show that it is imperative to study the behavior of the first time derivative of the dynamical free-energy density averaged over all the possible configurations, to characterize the occurrence of a DQPTs in the disordered toric code model since the disorder parameter itself acts as a new artificial dimension. We also show that for the case where anyonic excitations are present in the initial state, the conditions for a DQPTs to occur are the same as what happens in the absence of any excitation.

rate research

Read More

118 - D. M. Kennes , D. Schuricht , 2018
We study the dynamics arising from a double quantum quench where the parameters of a given Hamiltonian are abruptly changed from being in an equilibrium phase A to a different phase B and back (A$to$B$to$A). As prototype models, we consider the (integrable) transverse field Ising as well as the (non-integrable) ANNNI model. The return amplitude features non-analyticities after the first quench through the equilibrium quantum critical point (A$to$B), which is routinely taken as a signature of passing through a so-called dynamical quantum phase transition. We demonstrate that non-analyticities after the second quench (B$to$A) can be avoided and reestablished in a recurring manner upon increasing the time $T$ spent in phase B. The system retains an infinite memory of its past state, and one has the intriguing opportunity to control at will whether or not dynamical quantum phase transitions appear after the second quench.
We explore the possibility of dynamical quantum phase transitions (DQPTs) occurring during the temporal evolution of a quenched transverse field Ising chain coupled to a particle loss type of bath (local in Jordan-Wigner fermion space) using t
We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, a dissipative version of the quantum Ising model, and the micromaser. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and in general dynamical phase behavior needs to be uncovered by observables which are strictly dynamical, e.g. dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states.
We analyze the thermalization properties and the validity of the Eigenstate Thermalization Hypothesis in a generic class of quantum Hamiltonians where the quench parameter explicitly breaks a Z_2 symmetry. Natural realizations of such systems are given by random matrices expressed in a block form where the terms responsible for the quench dynamics are the off-diagonal blocks. Our analysis examines both dense and sparse random matrix realizations of the Hamiltonians and the observables. Sparse random matrices may be associated with local quantum Hamiltonians and they show a different spread of the observables on the energy eigenstates with respect to the dense ones. In particular, the numerical data seems to support the existence of rare states, i.e. states where the observables take expectation values which are different compared to the typical ones sampled by the micro-canonical distribution. In the case of sparse random matrices we also extract the finite size behavior of two different time scales associated with the thermalization process.
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appear in the context of many-body localization. Using the combination of the mapping onto $l$-bits and exact diagonalization results, we explicitly demonstrate the presence of these singularities for a candidate model that features many-body localization. Our work paves the way for understanding dynamical quantum phase transitions in the context of many-body localization, and elucidating whether different phases of the latter can be detected from analyzing the former. The results presented are experimentally accessible with state-of-the-art ultracold-atom and ion-trap setups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا