Topological transitive sequence of cosine operators on Orlicz space


Abstract in English

For a Young function $phi$ and a locally compact second countable group $G,$ let $L^phi(G)$ denote the Orlicz space on $G.$ In this article, we present a necessary and sufficient condition for the topological transitivity of a sequence of cosine operators ${C_n}_{n=1}^{infty}:={frac{1}{2}(T^n_{g,w}+S^n_{g,w})}_{n=1}^{infty}$, defined on $L^{phi}(G)$. We investigate the conditions for a sequence of cosine operators to be topological mixing. Moreover, we go on to prove the similar results for the direct sum of a sequence of the cosine operators. At the last, an example of a topological transitive sequence of cosine operators is given.

Download