Do you want to publish a course? Click here

Constraints on holographic multi-field inflation and models based on the Hamilton-Jacobi formalism

254   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In holographic inflation, the $4D$ cosmological dynamics is postulated to be dual to the renormalization group flow of a $3D$ Euclidean conformal field theory with marginally relevant operators. The scalar potential of the $4D$ theory ---in which inflation is realized--- is highly constrained, with use of the Hamilton--Jacobi equations. In multi-field holographic realizations of inflation, fields additional to the inflaton cannot display underdamped oscillations (that is, their wavefunctions contain no oscillatory phases independent of the momenta). We show that this result is exact, independent of the number of fields, the field space geometry and the shape of the inflationary trajectory followed in multi-field space. In the specific case where the multi-field trajectory is a straight line or confined to a plane, it can be understood as the existence of an upper bound on the dynamical masses $m$ of extra fields of the form $m leq 3 H / 2$ up to slow roll corrections. This bound corresponds to the analytic continuation of the well known Breitenlohner--Freedman bound found in AdS spacetimes in the case when the masses are approximately constant. The absence of underdamped oscillations implies that a detection of cosmological collider oscillatory patterns in the non-Gaussian bispectrum would not only rule out single field inflation, but also holographic inflation or any inflationary model based on the Hamilton--Jacobi equations. Hence, future observations have the potential to exclude, at once, an entire class of inflationary theories, regardless of the details involved in their model building.



rate research

Read More

190 - Nakwoo Kim , Se-Jin Kim 2020
We study the Hamilton-Jacobi formulation of effective mechanical actions associated with holographic renormalization group flows when the field theory is put on the sphere and mass terms are turned on. Although the system is supersymmetric and it is described by a superpotential, Hamiltons characteristic function is not readily given by the superpotential when the boundary of AdS is curved. We propose a method to construct the solution as a series expansion in scalar field degrees of freedom. The coefficients are functions of the warp factor to be determined by a differential equation one obtains when the ansatz is substituted into the Hamilton-Jacobi equation. We also show how the solution can be derived from the BPS equations without having to solve differential equations. The characteristic function readily provides information on holographic counterterms which cancel divergences of the on-shell action near the boundary of AdS.
We develop the path integral formalism for studying cosmological perturbations in multi-field inflation, which is particularly well suited to study quantum theories with gauge symmetries such as diffeomorphism invariance. We formulate the gauge fixing conditions based on the Poisson brackets of the constraints, from which we derive two convenient gauges that are appropriate for multi-field inflation. We then adopt the in-in formalism to derive the most general expression for the power spectrum of the curvature perturbation including the corrections from the interactions of the curvature mode with other light degrees of freedom. We also discuss the contributions of the interactions to the bispectrum.
We study the consequences of spatial coordinate transformation in multi-field inflation. Among the spontaneously broken de Sitter isometries, only dilatation in the comoving gauge preserves the form of the metric and thus results in quantum-protected Slavnov-Taylor identities. We derive the corresponding consistency relations between correlation functions of cosmological perturbations in two different ways, by the connected and one-particle-irreducible Greens functions. The lowest-order consistency relations are explicitly given, and we find that even in multi-field inflation the consistency relations in the soft limit are independent of the detail of the matter sector.
148 - Seoktae Koh 2009
We have investigated if the vector field can give rise to an accelerating phase in the early universe. We consider a timelike vector field with a general quadratic kinetic term in order to preserve an isotropic background spacetime. The vector field potential is required to satisfy the three minimal conditions for successful inflation: i) $rho>0$, ii) $rho+3P < 0$ and iii) the slow-roll conditions. As an example, we consider the massive vector potential and small field type potential as like in scalar driven inflation.
Hilltop inflation models are often described by potentials $V = V_{0}(1-{phi^{n}over m^{n}}+...)$. The omitted terms indicated by ellipsis do not affect inflation for $m lesssim 1$, but the most popular models with $n =2$ and $4$ for $m lesssim 1$ are ruled out observationally. Meanwhile in the large $m$ limit the results of the calculations of the tensor to scalar ratio $r$ in the models with $V = V_{0}(1-{phi^{n}over m^{n}})$, for all $n$, converge to $r= 4/N lesssim 0.07$, as in chaotic inflation with $V sim phi$, suggesting a reasonably good fit to the Planck data. We show, however, that this is an artifact related to the inconsistency of the model $V = V_{0}(1-{phi^{n}over m^{n}})$ at $phi > m$. Consistent generalizations of this model in the large $m$ limit typically lead to a much greater value $r= 8/N$, which negatively affects the observational status of hilltop inflation. Similar results are valid for D-brane inflation with $V = V_{0}(1-{m^{n}over phi^{n}})$, but consistent generalizations of D-brane inflation models may successfully complement $alpha$-attractors in describing most of the area in the ($n_{s}$, $r$) space favored by Planck 2018.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا