Do you want to publish a course? Click here

Compressions of compact tuples

271   0   0.0 ( 0 )
 Added by Orr Shalit
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We study the matrix range of a tuple of compact operators on a Hilbert space and examine the notions of minimal, nonsingular, and fully compressed tuples. In this pursuit, we refine previous results by characterizing nonsingular compact tuples in terms of matrix extreme points of the matrix range. Further, we find that a compact tuple $A$ is fully compressed if and only if it is multiplicity-free and the Shilov ideal is trivial, which occurs if and only if $A$ is minimal and nonsingular. Fully compressed compact tuples are therefore uniquely determined up to unitary equivalence by their matrix ranges. We also produce a proof of this fact which does not depend on the concept of nonsingularity.



rate research

Read More

We use Arvesons notion of strongly peaking representation to generalize uniqueness theorems for free spectrahedra and matrix convex sets which admit minimal presentations. A fully compressed separable operator system necessarily generates the C*-envelope and is such that the identity is the direct sum of strongly peaking representations. In particular, a fully compressed presentation of a separable operator system is unique up to unitary equivalence. Under various additional assumptions, minimality conditions are sufficient to determine a separable operator system uniquely.
180 - Pekka Salmi 2010
We show that there is a one-to-one correspondence between compact quantum subgroups of a co-amenable locally compact quantum group $mathbb{G}$ and certain left invariant C*-subalgebras of $C_0(mathbb{G})$. We also prove that every compact quantum subgroup of a co-amenable quantum group is co-amenable. Moreover, there is a one-to-one correspondence between open subgroups of an amenable locally compact group $G$ and non-zero, invariant C*-subalgebras of the group C*-algebra $C^*(G)$.
We investigate quantum group generalizations of various density results from Fourier analysis on compact groups. In particular, we establish the density of characters in the space of fixed points of the conjugation action on $L^2(mathbb{G})$, and use this result to show the weak* density and norm density of characters in $ZL^{infty}(mathbb{G})$ and $ZC(mathbb{G})$, respectively. As a corollary, we partially answer an open question of Woronowicz. At the level of $L^1(mathbb{G})$, we show that the center $mathcal{Z}(L^1(mathbb{G}))$ is precisely the closed linear span of the quantum characters for a large class of compact quantum groups, including arbitrary compact Kac algebras. In the latter setting, we show, in addition, that $mathcal{Z}(L^1(mathbb{G}))$ is a completely complemented $mathcal{Z}(L^1(mathbb{G}))$-submodule of $L^1(mathbb{G})$.
The characteristic function has been an important tool for studying completely non unitary contractions on Hilbert spaces. In this note, we consider completely non-coisometric contractive tuples of commuting operators on a Hilbert space $clh$. We show that the characteristic function, which is now an operator valued analytic function on the open Euclidean unit ball in $mathbb{C}^n$, is a complete unitary invariant for such a tuple. We prove that the characteristic function satisfies a natural transformation law under biholomorphic mappings of the unit ball. We also characterize all operator-valued analytic functions which arise as characteristic functions of pure commuting contractive tuples.
85 - Alberto Dayan 2021
We study interpolating sequences of $d$-tuples of matrices, by looking at the commuting and the non-commuting case separately. In both cases, we will give a characterization of such sequences in terms of separation conditions on suitable reproducing kernel Hilbert spaces, and we will give sufficient conditions stated in terms of separation via analytic functions. Examples of such interpolating sequences will also be given
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا