Quadratic non-residues and non-primitive roots satisfying a coprimality condition


Abstract in English

Let $qgeq 1$ be any integer and let $ epsilon in [frac{1}{11}, frac{1}{2})$ be a given real number. In this short note, we prove that for all primes $p$ satisfying $$ pequiv 1pmod{q}, quad loglog p > frac{log 6.83}{frac{1}{2}-epsilon} mbox{ and } frac{phi(p-1)}{p-1} leq frac{1}{2} - epsilon, $$ there exists a quadratic non-residue $g$ which is not a primitive root modulo $p$ such that $gcdleft(g, frac{p-1}{q}right) = 1$.

Download