No Arabic abstract
We report a detailed and comparative study of the single crystal CeCoInGa$_3$ in both experiment and theory. Resistivity measurements reveal the typical behavior of Kondo lattice with the onset temperature of coherence, $T^*approx 50,$K. The magnetic specific heat can be well fitted using a spin-fluctuation model at low temperatures, yielding a large Sommerfeld coefficient, $gammaapprox172,$mJ/mol K$^2$ at 6 K, suggesting that this is a heavy-fermion compound with a pronounced coherence effect. The magnetic susceptibility exhibits a broad field-independent peak at $T_{chi}$ and shows an obvious anisotropy within the $bc$ plane, reflecting the anisotropy of the coherence effect at high temperatures. These are compared with strongly correlated calculations combining first-principles band structure calculations and dynamical mean-field theory. Our results confirm the onset of coherence at about 50 K and reveal a similar anisotropy in the hybridization gap, pointing to a close connection between the hybridization strength of the low-temperature Fermi-liquid state and the high-temperature coherence effect.
The magnetic ground state of the antiferromagnet Kondo lattice compound Ce8Pd24Ga has been investigated using neutron powder diffraction, inelastic neutron scattering and zero-field muon spin relaxation measurements. The neutron diffraction analysis, below TN (3.6(0.2)K), reveals a commensurate type-C antiferromagnetic structure with the ordered state magnetic moment of ~0.36 mB/Ce-atom along the cubic <111> direction. The analysis of the inelastic neutron scattering (INS) data based on the crystal field (CF) model reveals a doublet ground state with a ground state moment of 1.29 mB/Ce-atom. The observed magnetic moment from neutron diffraction, which is small compared to the expected value from CF-analysis, is attributed to screening of the local Ce moment by the Kondo effect. This is supported by the observed Kondo-type resistivity and a small change in the entropy of Ce8Pd24Ga at TN. The zero-field muon spin relaxation rate exhibits a sharp increase below TN indicating ordering of Ce moments, in agreement with the neutron diffraction data. The present studies reveal that the physical properties of Ce8Pd24Ga are governed by the onsite Kondo compensation, the moment stabilizing intersite RKKY interaction and the crystal field effect.
Cotunneling into Kondo systems, where an electron enters a $f$-electron material via a cotunneling process through the local-moment orbital, has been proposed to explain the characteristic lineshapes observed in scanning-tunneling-spectroscopy (STS) experiments. Here we extend the theory of electron cotunneling to Kondo-lattice systems where the bulk hybridization between conduction and $f$ electrons is odd under inversion, being particularly relevant to Kondo insulators. Compared to the case of even hybridization, we show that the interference between normal tunneling and cotunneling processes is fundamentally altered: it is entirely absent for layered, i.e., quasi-two-dimensional materials, while its energy dependence is strongly modified for three-dimensional materials. We discuss implications for STS experiments.
The recent discovery of topological Kondo insulating behaviour in strongly correlated electron systems has generated considerable interest in Kondo insulators both experimentally and theoretically. The Kondo semiconductors CeT2Al10 (T=Fe, Ru and Os) possessing a c-f hybridization gap have received considerable attention recently because of the unexpected high magnetic ordering temperature of CeRu2Al10 (TN=27 K) and CeOs2Al10 (TN=28.5 K) and the Kondo insulating behaviour observed in the valence fluctuating compound CeFe2Al10 with a paramagnetic ground state down to 50 mK. We are investigating this family of compounds, both in polycrystalline and single crystal form, using inelastic neutron scattering to understand the role of anisotropic c-f hybridization on the spin gap formation as well as on their magnetic properties. We have observed a clear sign of a spin gap in all three compounds from our polycrystalline study as well as the existence of a spin gap above the magnetic ordering temperature in T=Ru and Os. Our inelastic neutron scattering studies on single crystals of CeRu2Al10 and CeOs2Al10 revealed dispersive gapped spin wave excitations below TN. Analysis of the spin wave spectrum reveals the presence of strong anisotropic exchange, along the c-axis (or z-axis) stronger than in the ab-plane. These anisotropic exchange interactions force the magnetic moment to align along the c-axis, competing with the single ion crystal field anisotropy, which prefers moments along the a-axis. In the paramagnetic state (below 50 K) of the Kondo insulator CeFe2Al10, we have also observed dispersive gapped magnetic excitations which transform into quasi-elastic scattering on heating to 100 K. We will discuss the origin of the anisotropic hybridization gap in CeFe2Al10 based on theoretical models of heavy-fermion semiconductors.
We report on the electrical resistivity, magnetic susceptibility and heat-capacity measurements on a new intermetallic compound CePd5Al2, crystallizing in the ZrNi2Al5-type tetragonal structure, with lattice parameters a = 4.156 A and c = 14.883 A. The compound presents Kondo lattice behavior and an easy-plane antiferromagnetic ground state with two magnetic transitions at 2.9 K and 3.9 K. The Sommerfeld coefficient is estimated as 60 mJ/mol K^2.
We have measured the electric resistivity, magnetoresistance, magnetic susceptibility and magnetization of the new Kondo-lattice compound Ce3Pd4Ge4. The electrical resistivity exhibits a rapid drop at temperatures below 6 K, while the magnetic susceptibility does not show any corresponding anomaly at that temperature. This phenomenon is similar to that of Ce3Pd20Ge6 which shows quadrupolar interation. We suggest that there is the possibility of quadrupolar interaction in the orthorhombic 4f-electron system Ce3Pd4Ge4. In addition, it is realized that the spin-dependent scattering effect is responsible for the magnetotransport.