No Arabic abstract
We investigate axisymmetric steady solutions of (magneto)hydrodynamics equations that describe approximately accretion flows through a standing shock wave and discuss the effects of rotation and magnetic field on the revival of the stalled shock wave in supernova explosions. We develop a new powerful numerical method to calculate the 2-dimensional (2D) steady accretion flows self-consistently. We first confirm the results of preceding papers that there is a critical luminosity of irradiating neutrinos, above which there exists no steady solution in spherical models. If a collapsing star has rotation and/or magnetic field, the accretion flows are no longer spherical owing to the centrifugal force and/or Lorentz force and the critical luminosity is modified.In fact we find that the critical luminosity is reduced by about 50% - 70% for rapid rotations and about 20% - 50% for strong toroidal magnetic fields, depending on the mass accretion rate. These results may be also interpreted as an existence of the critical specific angular momentum or critical magnetic field, above which there exists no steady solution and the standing shock wave will revive for a given combination of mass accretion rate and neutrino luminosity.
In order to infer the effects of rotation on the revival of a stalled shock in supernova explosions, we investigated steady accretion flows with a standing shock. We first obtained a series of solutions for equations describing non-rotating spherically symmetric flows and confirmed the results of preceding papers that, for a given mass accretion rate, there is a critical luminosity of irradiating neutrinos, above which there exists no steady solution. Below the critical value, we found two branches of solutions; one is stable and the other is unstable against radial perturbations. With a simple argument based on the Riemann problem, we can identify the critical luminosity as the one, at which the stalled shock revives. We also obtained the condition satisfied by the flow velocity for the critical luminosity, which can be easily applied to the rotational case. If a collapsing star rotates, the accretion flow is non-spherical due to centrifugal forces. Flows are accelerated near the rotation axis whereas they are decelerated near the equatorial plane. As a result, the critical luminosity is lowered, that is, rotation assists the revival of a stalled shock. According to our calculations, the critical luminosity is $sim25$% lower for the mass accretion rate of 1M$_{odot}$/sec and the rotation frequency of 0.1 Hz at a radius of 1000 km than that of the spherically symmetric flow with the same mass accretion rate. We found that the condition of the flow velocity at the critical luminosity is first satisfied at the rotation axis. This suggests that the shock revival is triggered on the rotation axis and a jet-like explosion ensues.
Several observations of astrophysical jets show evidence of a structure in the direction perpendicular to the jet axis, leading to the development of spine & sheath models of jets. Most studies focus on a two-component jet consisting of a highly relativistic inner jet and a slower - but still relativistic - outer jet surrounded by an unmagnetized environment. These jets are believed to be susceptible to a relativistic Rayleigh-Taylor-type instability, depending on the effective inertia ratio of the two components. We extend previous studies by taking into account the presence of a non-zero toroidal magnetic field. Different values of magnetization are examined, to detect possible differences in the evolution and stability of the jet. We find that the toroidal field, above a certain level of magnetization $sigma$, roughly equal to 0.01, can stabilize the jet against the previously mentioned instabilities and that there is a clear trend in the behaviour of the average Lorentz factor and the effective radius of the jet when we continuously increase the magnetization. The simulations are performed using the relativistic MHD module from the open source, parallel, grid adaptive, MPI-AMRVAC code.
We present a polarimetric study of the pulsar wind nebula (PWN) in supernova remnant G21.5$-$0.9 using archival Very Large Array (VLA) data. The rotation measure (RM) map of the PWN shows a symmetric pattern that aligns with the presumed pulsar spin axis direction, implying a significant contribution of RM from the nebula. We suggest that the spatial variation of the internal RM is mostly caused by non-uniform distribution of electrons originated from the supernova ejecta. Our high-resolution radio polarization map reveals an overall radial $B$-field. We construct a simple model with an overall radial $B$-field and turbulence in small scale. The model can reproduce many of the observed features of the PWN, including the polarization pattern and polarized fraction. The results also reject a large-scale toroidal $B$-field which implies that the toroidal field observed in the inner PWN cannot propagate to the entire nebula.
We present the first self-consistent, three-dimensional (3D) core-collapse supernova simulations performed with the Prometheus-Vertex code for a rotating progenitor star. Besides using the angular momentum of the 15 solar-mass model as obtained in the stellar evolution calculation with an angular frequency of about 0.001 rad/s (spin period of more than 6000 s) at the Si/Si-O interface, we also computed 2D and 3D cases with no rotation and with a ~300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast rotating model develops an explosion in 3D when the Si/Si-O interface collapses through the shock. The explosion becomes possible by the support of a powerful SASI spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a two-dimensionalization of the turbulent energy spectrum (yielding roughly a -3 instead of a -5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the universal critical luminosity condition of Summa et al. (2016) to account for the effects of rotation, and demonstrate its viability for a set of more than 40 core-collapse simulations including 9 and 20 solar-mass progenitors as well as black-hole forming cases of 40 and 75 solar-mass stars to be discussed in forthcoming papers.
We present a study of the influence of magnetic field strength and morphology in Type Ia Supernovae and their late-time light curves and spectra. In order to both capture self-consistent magnetic field topologies as well evolve our models to late times, a two stage approach is taken. We study the early deflagration phase (1s) using a variety of magnetic field strengths, and find that the topology of the field is set by the burning, independent of the initial strength. We study late time (~1000 days) light curves and spectra with a variety of magnetic field topologies, and infer magnetic field strengths from observed supernovae. Lower limits are found to be 106G. This is determined by the escape, or lack thereof, of positrons that are tied to the magnetic field. The first stage employs 3d MHD and a local burning approximation, and uses the code Enzo. The second stage employs a hybrid approach, with 3D radiation and positron transport, and spherical hydrodynamics. The second stage uses the code HYDRA. In our models, magnetic field amplification remains small during the early deflagration phase. Late-time spectra bear the imprint of both magnetic field strength and morphology. Implications for alternative explosion scenarios are discussed.