Do you want to publish a course? Click here

Dynamical cluster disruption and its implications for multiple population models in the E-MOSAICS simulations

176   0   0.0 ( 0 )
 Added by Marta Reina-Campos
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Several models have been advanced to explain the multiple stellar populations observed in globular clusters (GCs). Most models necessitate a large initial population of unenriched stars that provide the pollution for an enriched population, and which are subsequently lost from the cluster. This scenario generally requires clusters to lose $>90$ per cent of their birth mass. We use a suite of 25 cosmological zoom-in simulations of present-day Milky Way-mass galaxies from the emosaics project to study whether dynamical disruption by evaporation and tidal shocking provides the necessary mass loss. We find that GCs with present-day masses $M>10^5~M_{odot}$ were only $2$-$4$ times more massive at birth, in conflict with the requirements of the proposed models. This factor correlates weakly with metallicity, gas pressure at birth, or galactocentric radius, but increases towards lower GC masses. To reconcile our results with observational data, either an unphysically steep cluster mass-size relation must be assumed, or the initial enriched fractions must be similar to their present values. We provide the required relation between the initial enriched fraction and cluster mass. Dynamical cluster mass loss cannot reproduce the high observed enriched fractions nor their trend with cluster mass.



rate research

Read More

Linking globular clusters (GCs) to the assembly of their host galaxies is an overarching goal in GC studies. The inference of tight scaling relations between GC system properties and the mass of both the stellar and dark halo components of their host galaxies are indicative of an intimate physical connection, yet have also raised fundamental questions about how and when GCs form. Specifically, the inferred correlation between the mass of a GC system (Mgc) and the dark matter halo mass (Mhalo) of a galaxy has been posited as a consequence of a causal relation between the formation of dark matter mini-haloes and GC formation during the early epochs of galaxy assembly. We present the first results from a new simulation of a cosmological volume ($L=34.4$~cMpc on a side) from the E-MOSAICS suite, which includes treatments of the formation and evolution of GCs within the framework of a detailed galaxy formation model. The simulated Mgc-Mhalo relation is linear for halo masses $>5times10^{11}~Msun$, and is driven by the hierarchical assembly of galaxies. Below this halo mass, the simulated relation features a downturn, which we show is consistent with observations, and is driven by the underlying stellar mass-halo mass relation of galaxies. Our fiducial model reproduces the observed Mgc-Mstar relation across the full mass range, which we argue is more physically relevant than the Mgc-Mhalo relation. We also explore the physical processes driving the observed constant value of $Mgc / Mhalo sim 5times10^{-5}$ and find that it is the result of a combination of cluster formation physics and cluster disruption.
Globular clusters (GCs) have been posited, alongside dwarf galaxies, as significant contributors to the field stellar population of the Galactic halo. In order to quantify their contribution, we examine the fraction of halo stars formed in stellar clusters in the suite of 25 present-day Milky Way-mass cosmological zoom simulations from the E-MOSAICS project. We find that a median of $2.3$ and $0.3$ per cent of the mass in halo field stars formed in clusters and GCs, defined as clusters more massive than $5times 10^3$ and $10^5~M_{odot}$, respectively, with the $25$-$75$th percentiles spanning $1.9$-$3.0$ and $0.2$-$0.5$ per cent being caused by differences in the assembly histories of the host galaxies. Under the extreme assumption that no stellar cluster survives to the present day, the mass fractions increase to a median of $5.9$ and $1.8$ per cent. These small fractions indicate that the disruption of GCs plays a sub-dominant role in the build-up of the stellar halo. We also determine the contributed halo mass fraction that would present signatures of light-element abundance variations considered to be unique to GCs, and find that clusters and GCs would contribute a median of $1.1$ and $0.2$ per cent, respectively. We estimate the contributed fraction of GC stars to the Milky Way halo, based on recent surveys, and find upper limits of $2$-$5$ per cent (significantly lower than previous estimates), suggesting that models other than those invoking strong mass loss are required to describe the formation of chemically enriched stellar populations in GCs.
The formation histories of globular clusters (GCs) are a key diagnostic for understanding their relation to the evolution of the Universe through cosmic time. We use the suite of 25 cosmological zoom-in simulations of present-day Milky Way-mass galaxies from the E-MOSAICS project to study the formation histories of stars, clusters, and GCs, and how these are affected by the environmental dependence of the cluster formation physics. We find that the median lookback time of GC formation in these galaxies is ${sim}10.73~$Gyr ($z=2.1$), roughly $2.5~$Gyr earlier than that of the field stars (${sim}8.34~$Gyr or $z=1.1$). The epoch of peak GC formation is mainly determined by the time evolution of the maximum cluster mass, which depends on the galactic environment and largely increases with the gas pressure. Different metallicity subpopulations of stars, clusters and GCs present overlapping formation histories, implying that star and cluster formation represent continuous processes. The metal-poor GCs ($-2.5<[rm Fe/H]<-1.5$) of our galaxies are older than the metal-rich GC subpopulation ($-1.0<[rm Fe/H]<-0.5$), forming $12.13~$Gyr and $10.15~$Gyr ago ($z=3.7$ and $z=1.8$), respectively. The median ages of GCs are found to decrease gradually with increasing metallicity, which suggests different GC metallicity subpopulations do not form independently and their spatial and kinematic distributions are the result of their evolution in the context of hierarchical galaxy formation and evolution. We predict that proto-GC formation is most prevalent at $2lesssim z lesssim 3$, which could be tested with observations of lensed galaxies using JWST.
We set out to compare the age-metallicity relation (AMR) of massive clusters from Magellanic Cloud mass galaxies in the E-MOSAICS suite of numerical cosmological simulations with an amalgamation of observational data of massive clusters in the Large and Small Magellanic Clouds (LMC/SMC). We aim to test if: i) star cluster formation proceeds according to universal physical processes, suggestive of a common formation mechanism for young-massive clusters (YMCs), intermediate-age clusters (IACs), and ancient globular clusters (GCs); ii) massive clusters of all ages trace a continuous AMR; iii) the AMRs of smaller mass galaxies show a shallower relation when compared to more massive galaxies. Our results show that, within the uncertainties, the predicted AMRs of L/SMC-mass galaxies with similar star formation histories to the L/SMC follow the same relation as observations. We also find that the metallicity at which the AMR saturates increases with galaxy mass, which is also found for the field star AMRs. This suggests that relatively low-metallicity clusters can still form in dwarfs galaxies. Given our results, we suggest that ancient GCs share their formation mechanism with IACs and YMCs, in which GCs are the result of a universal process of star cluster formation during the early episodes of star formation in their host galaxies.
Globular clusters (GCs) are bright objects that span a wide range of galactocentric distances, and are thus probes of the structure of dark matter (DM) haloes. In this work, we explore whether the projected radial profiles of GCs can be used to infer the structural properties of their host DM haloes. We use the simulated GC populations in a sample of 166 central galaxies from the $(34.4~rm cMpc)^3$ periodic volume of the E-MOSAICS project. We find that more massive galaxies host stellar and GC populations with shallower density profiles that are more radially extended. In addition, the metal-poor GC subpopulations tend to have shallower and more extended profiles than the metal-rich subsamples, which we relate to the preferentially accreted origin of the metal-poor GCs. We find strong correlations between the slopes and effective radii of the radial profiles of the GC populations and the structural properties of the DM haloes, such as their power-law slopes, scale radii, and concentration parameters. Accounting for a dependence on the galaxy stellar mass decreases the scatter of the two-dimensional relations. This suggests that the projected number counts of GCs, combined with their galaxy mass, trace the density profile of the DM halo of their host galaxy. When applied to extragalactic GC systems, we recover the scale radii and the extent of the DM haloes of a sample of ETGs with uncertainties smaller than $0.2~rm dex$. Thus, extragalactic GC systems provide a novel avenue to explore the structure of DM haloes beyond the Local Group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا