Do you want to publish a course? Click here

Cyclotomy, difference sets, sequences with low correlation, strongly regular graphs, and related geometric substructures

127   0   0.0 ( 0 )
 Added by Qing Xiang
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we survey constructions of and nonexistence results on combinatorial/geometric structures which arise from unions of cyclotomic classes of finite fields. In particular, we survey both classical and recent results on difference sets related to cyclotomy, and cyclotomic constructions of sequences with low correlation. We also give an extensive survey of recent results on constructions of strongly regular Cayley graphs and related geometric substructures such as $m$-ovoids and $i$-tight sets in classical polar spaces.



rate research

Read More

113 - Koji Momihara , Qing Xiang 2017
In this paper, we give a new lifting construction of hyperbolic type of strongly regular Cayley graphs. Also we give new constructions of strongly regular Cayley graphs over the additive groups of finite fields based on partitions of subdifference sets of the Singer difference sets. Our results unify some recent constructions of strongly regular Cayley graphs related to $m$-ovoids and $i$-tight sets in finite geometry. Furthermore, some of the strongly regular Cayley graphs obtained in this paper are new or nonisomorphic to known strongly regular graphs with the same parameters.
In this paper, we give a construction of strongly regular Cayley graphs and a construction of skew Hadamard difference sets. Both constructions are based on choosing cyclotomic classes in finite fields, and they generalize the constructions given by Feng and Xiang cite{FX111,FX113}. Three infinite families of strongly regular graphs with new parameters are obtained. The main tools that we employed are index 2 Gauss sums, instead of cyclotomic numbers.
Strongly walk-regular graphs can be constructed as coset graphs of the duals of projective three-weight codes whose weights satisfy a certain equation. We provide classifications of the feasible parameters in the binary and ternary case for medium size code lengths. Additionally some theoretical insights on the properties of the feasible parameters are presented.
The Laplacian spread of a graph is the difference between the largest eigenvalue and the second-smallest eigenvalue of the Laplacian matrix of the graph. We find that the class of strongly regular graphs attains the maximum of largest eigenvalues, the minimum of second-smallest eigenvalues of Laplacian matrices and hence the maximum of Laplacian spreads among all simple connected graphs of fixed order, minimum degree, maximum degree, minimum size of common neighbors of two adjacent vertices and minimum size of common neighbors of two nonadjacent vertices. Some other extremal graphs are also provided.
72 - Sho Kubota 2016
We consider orbit partitions of groups of automorphisms for the symplectic graph and apply Godsil-McKay switching. As a result, we find four families of strongly regular graphs with the same parameters as the symplectic graphs, including the one discovered by Abiad and Haemers. Also, we prove that switched graphs are non-isomorphic to each other by considering the number of common neighbors of three vertices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا