Do you want to publish a course? Click here

Growth and Raman spectroscopy of thickness-controlled rotationally faulted multilayer graphene

212   0   0.0 ( 0 )
 Added by Hojun Im
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the growth of thickness-controlled rotationally faulted multilayer graphene (rf-MLG) on Ni foils by low-pressure chemical vapor deposition and their characterization by micro-Raman spectroscopy. The surface morphology and thickness were investigated by scanning electron microscope, X-ray diffraction, and transmittance measurements. These results have revealed that the thickness of rf-MLG can be effectively controlled by the thickness of the Ni foil rather than the flow rate of CH$_4$, H$_2$, Ar. In the Raman spectroscopy measurements, we observed most Raman peaks of the graphitic materials. Raman spectra can be categorized into four patterns and show systematic behaviors. Especially, the in-plane (~1880 cm$^{-1}$, ~2035 cm$^{-1}$) and out-of-plane (~1750 cm$^{-1}$) modes are successfully analyzed to explain the dimensionality of rf-MLG as in the twisted (or rotated) bilayer graphene. In addition, it is found that the two peaks at ~1230 cm$^{-1}$ and ~2220 cm$^{-1}$ well reflect the properties of the in-plane mode. The peak intensities of the above four in-plane modes are proportional to that of 2D band, indicating that they share the common Raman resonance process.



rate research

Read More

Graphene edges are of particular interest, since their chirality determines the electronic properties. Here we present a detailed Raman investigation of graphene flakes with well defined edges oriented at different crystallographic directions. The position, width and intensity of G and D peaks at the edges are studied as a function of the incident light polarization. The D-band is strongest for light polarized parallel to the edge and minimum for perpendicular orientation. Raman mapping shows that the D peak is localized in proximity of the edge. The D to G ratio does not always show a significant dependence on edge orientation. Thus, even though edges can appear macroscopically smooth and oriented at well defined angles, they are not necessarily microscopically ordered.
240 - I. Calizo , W. Bao , F. Miao 2007
The room-temperature Raman signatures from graphene layers on sapphire and glass substrates were compared with those from graphene on GaAs substrate and on the standard Si/SiO2 substrate, which served as a reference. It was found that while G peak of graphene on Si/SiO2 and GaAs is positioned at 1580 cm-1 it is down-shifted by ~5 cm-1 for graphene-on-sapphire (GOS) and, in many cases, splits into doublets for graphene-on-glass (GOG) with the central frequency around 1580 cm-1. The obtained results are important for graphene characterization and its proposed graphene applications in electronic devices.
Rhombohedral multilayer graphene is a physical realization of the chiral two-dimensional electron gas that can host zero-line modes (ZLMs), also known as kink states, when the local ap opened by inversion symmetry breaking potential changes sign in real space. Here we study how the variations in the local stacking coordination of multilayer graphene affects the formation of the ZLMs. Our analysis indicates that the valley Hall effect develops whenever an interlayer potential difference is able to open up a band gap in stacking faulted multilayer graphene, and that ZLMs can appear at the domain walls separating two distinct regions with imperfect rhombohedral stacking configurations. Based on a tight-binding formulation with distant hopping terms between carbon atoms, we first show that topologically distinct domains characterized by the valley Chern number are separated by a metallic region connecting AA and AA$$ stacking line in the layer translation vector space. We find that gapless states appear at the interface between the two stacking faulted domains with different layer translation or with opposite perpendicular electric field if their valley Chern numbers are different.
180 - Nicola Ferralis 2010
The use of Raman scattering techniques to study the mechanical properties of graphene films is reviewed here. The determination of Gruneisen parameters of suspended graphene sheets under uni- and bi-axial strain is discussed and the values are compared to theoretical predictions. The effects of the graphene-substrate interaction on strain and to the temperature evolution of the graphene Raman spectra are discussed. Finally, the relation between mechanical and thermal properties is presented along with the characterization of thermal properties of graphene with Raman spectroscopy.
The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-dimensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magnetoexcitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا