Do you want to publish a course? Click here

From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning

66   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Machine learning algorithms are highly useful for the classification of time series data in astronomy in this era of peta-scale public survey data releases. These methods can facilitate the discovery of new unknown events in most astrophysical areas, as well as improving the analysis of samples of known phenomena. Machine learning algorithms use features extracted from collected data as input predictive variables. A public tool called Feature Analysis for Time Series (FATS) has proved an excellent workhorse for feature extraction, particularly light curve classification for variable objects. In this study, we present a major improvement to FATS, which corrects inconvenient design choices, minor details, and documentation for the re-engineering process. This improvement comprises a new Python package called feets, which is important for future code-refactoring for astronomical software tools.



rate research

Read More

We develop a set of methods to improve on the results of self-supervised learning using context. We start with a baseline of patch based arrangement context learning and go from there. Our methods address some overt problems such as chromatic aberration as well as other potential problems such as spatial skew and mid-level feature neglect. We prevent problems with testing generalization on common self-supervised benchmark tests by using different datasets during our development. The results of our methods combined yield top scores on all standard self-supervised benchmarks, including classification and detection on PASCAL VOC 2007, segmentation on PASCAL VOC 2012, and linear tests on the ImageNet and CSAIL Places datasets. We obtain an improvement over our baseline method of between 4.0 to 7.1 percentage points on transfer learning classification tests. We also show results on different standard network architectures to demonstrate generalization as well as portability. All data, models and programs are available at: https://gdo-datasci.llnl.gov/selfsupervised/.
In this paper, we present the FATS (Feature Analysis for Time Series) library. FATS is a Python library which facilitates and standardizes feature extraction for time series data. In particular, we focus on one application: feature extraction for astronomical light curve data, although the library is generalizable for other uses. We detail the methods and features implemented for light curve analysis, and present examples for its usage.
The exploitation of present and future synoptic (multi-band and multi-epoch) surveys requires an extensive use of automatic methods for data processing and data interpretation. In this work, using data extracted from the Catalina Real Time Transient Survey (CRTS), we investigate the classification performance of some well tested methods: Random Forest, MLPQNA (Multi Layer Perceptron with Quasi Newton Algorithm) and K-Nearest Neighbors, paying special attention to the feature selection phase. In order to do so, several classification experiments were performed. Namely: identification of cataclysmic variables, separation between galactic and extra-galactic objects and identification of supernovae.
We introduce Surfboard, an open-source Python library for extracting audio features with application to the medical domain. Surfboard is written with the aim of addressing pain points of existing libraries and facilitating joint use with modern machine learning frameworks. The package can be accessed both programmatically in Python and via its command line interface, allowing it to be easily integrated within machine learning workflows. It builds on state-of-the-art audio analysis packages and offers multiprocessing support for processing large workloads. We review similar frameworks and describe Surfboards architecture, including the clinical motivation for its features. Using the mPower dataset, we illustrate Surfboards application to a Parkinsons disease classification task, highlighting common pitfalls in existing research. The source code is opened up to the research community to facilitate future audio research in the clinical domain.
341 - Ke Sun , Lei Wang , Bo Xu 2021
Network representation learning (NRL) is an effective graph analytics technique and promotes users to deeply understand the hidden characteristics of graph data. It has been successfully applied in many real-world tasks related to network science, such as social network data processing, biological information processing, and recommender systems. Deep Learning is a powerful tool to learn data features. However, it is non-trivial to generalize deep learning to graph-structured data since it is different from the regular data such as pictures having spatial information and sounds having temporal information. Recently, researchers proposed many deep learning-based methods in the area of NRL. In this survey, we investigate classical NRL from traditional feature learning method to the deep learning-based model, analyze relationships between them, and summarize the latest progress. Finally, we discuss open issues considering NRL and point out the future directions in this field.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا