Do you want to publish a course? Click here

Circuit Quantum Simulation of a Tomonaga-Luttinger Liquid with an Impurity

69   0   0.0 ( 0 )
 Added by Frederic Pierre
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Tomonaga-Luttinger liquid (TLL) concept is believed to generically describe the strongly-correlated physics of one-dimensional systems at low temperatures. A hallmark signature in 1D conductors is the quantum phase transition between metallic and insulating states induced by a single impurity. However, this transition impedes experimental explorations of real-world TLLs. Furthermore, its theoretical treatment, explaining the universal energy rescaling of the conductance at low temperatures, has so far been achieved exactly only for specific interaction strengths. Quantum simulation can provide a powerful workaround. Here, a hybrid metal-semiconductor dissipative quantum circuit is shown to implement the analogue of a TLL of adjustable electronic interactions comprising a single, fully tunable scattering impurity. Measurements reveal the renormalization group `beta-function for the conductance that completely determines the TLL universal crossover to an insulating state upon cooling. Moreover, the characteristic scaling energy locating at a given temperature the position within this conductance renormalization flow is established over nine decades versus circuit parameters, and the out-of-equilibrium regime is explored. With the quantum simulator quality demonstrated from the precise parameter-free validation of existing and novel TLL predictions, quantum simulation is achieved in a strong sense, by elucidating interaction regimes which resist theoretical solutions.

rate research

Read More

Electronic waveguides in graphene formed by counterpropagating snake states in suitable inhomogeneous magnetic fields are shown to constitute a realization of a Tomonaga-Luttinger liquid. Due to the spatial separation of the right- and left-moving snake states, this non-Fermi liquid state induced by electron-electron interactions is essentially unaffected by disorder. We calculate the interaction parameters accounting for the absence of Galilei invariance in this system, and thereby demonstrate that non-Fermi liquid effects are significant and tunable in realistic geometries.
We report encapsulated C60 molecules on electron transport in carbon-nanotube peapod quantum dots. We find atomic-like behaviors with doubly degenerate electronic levels, which exist only around ground states, by single electron spectroscopy measured at low back-gate voltages (Vbgs). Correlation with presence of nearly free electrons (NFEs) unique to the peapods is discussed. In contrast, we find that encapsulated C60 molecules do not affect to single charging effect. Moreover, we find anomalously high values of powers observed in power laws in conductance versus energy relationships, which are strongly associated with the doubly degenerate levels. It is revealed that the powers originate from Tomonaga-Luttinger liquids via the occupied doubly degenerate levels. Encapsulated C60 molecules do not eliminate a ballistic charge transport in single-walled nanotubes.
The model of interacting fermion systems in one dimension known as Tomonaga-Luttinger liquid (TLL) provides a simple and exactly solvable theoretical framework, predicting various intriguing physical properties. Evidence of TLL has been observed as power-law behavior in the electronic transport and momentum-resolved spectroscopy on various types of one-dimensional (1D) conductors. However, these measurements, which rely on dc transport involving tunneling processes, cannot identify the eigenmodes of the TLL, i.e., collective excitations characterized by non-trivial effective charge e* and charge velocity v*. The elementary process of charge fractionalization, a phenomenon predicted to occur at the junction of a TLL and non-interacting leads, has not been observed. Here we report time-resolved transport measurements on an artificial TLL comprised of coupled integer quantum Hall edge channels, successfully identifying single charge fractionalization processes. An electron wave packet with charge e incident from a non-interacting region breaks up into several fractionalized charge wave packets at the edges of the artificial TLL region, from which e* and v* can be directly evaluated. These results are informative for elucidating the nature of TLLs and low-energy excitations in the edge channels.
There have been conflicting reports on the electronic properties of twin domain boundaries (DBs) in MoSe2 monolayer, including the quantum well states, charge density wave, and Tomonaga-Luttinger liquid (TLL). Here we employ low-temperature scanning tunneling spectroscopy to reveal both the quantum confinement effect and signatures of TLL in the one-dimensional DBs. The data do not support the CDW at temperatures down to ~5 K.
We study transport through a quantum dot side-coupled to two parallel Luttinger liquid leads in the presence of a Coulombic dot-lead interaction. This geometry enables an exact treatment of the inter-lead Coulomb interactions. We find that for dots symmetrically disposed between the two leads the correlation of charge fluctuations between the two leads can lead to an enhancement of the current at the Coulomb-blockade edge and even to a negative differential conductance. Moving the dot off center or separating the wires further converts the enhancement to a suppression.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا