We discuss and qualify a previously unnoticed connection between two different phenomena in the physics of nanoscale friction, general in nature and also met in experiments including sliding emu- lations in optical lattices, and protein force spectroscopy. The first is thermolubricity, designating the condition in which a dry nanosized slider can at sufficiently high temperature and low velocity exhibit very small viscous friction f ~ v despite strong corrugations that would commonly imply hard mechanical stick-slip f ~ log(v). The second, apparently unrelated phenomenon present in externally forced nanosystems, is the occurrence of negative work tails (free lunches) in the work probabilty distribution, tails whose presence is necessary to fulfil the celebrated Jarzynski equality of non-equilibrium statistical mechanics. Here we prove analytically and demonstrate numerically in the prototypical classical overdamped one-dimensional point slider (Prandtl-Tomlinson) model that the presence or absence of thermolubricity is exactly equivalent to satisfaction or violation of the Jarzynski equality. The divide between the two regimes, satisfaction of Jarzynski with ther- molubricity, and violation of both, simply coincides with the total frictional work per cycle falling below or above kT respectively. This concept can, with due caution, be extended to more complex sliders, thus inviting crosscheck experiments, such as searching for free lunches in cold ion sliding as well as in forced protein unwinding, and alternatively checking for a thermolubric regime in dragged colloid monolayers. As an important byproduct, we derive a parameter-free formula expressing the linear velocity coefficient of frictional dissipated power in the thermolubric viscous regime, correcting previous empirically parametrized expressions.