Do you want to publish a course? Click here

Dust spectrum and polarisation at 850 um in the massive IRDC G035.39-00.33

503   0   0.0 ( 0 )
 Added by Mika Juvela
 Publication date 2018
  fields Physics
and research's language is English
 Authors Mika Juvela




Ask ChatGPT about the research

The dust sub-millimetre polarisation of star-forming clouds carries information on dust and the role of magnetic fields in cloud evolution. With observations of a dense filamentary cloud G035.39-00.33, we aim to characterise the dust emission properties and the variations of the polarisation fraction. JCMT SCUBA-2/POL-2 data at 850um are combined with Planck 850um (353GHz) data to map polarisation fractions. With previous SCUBA-2 observations (450um and 850um) and Herschel data, the column densities are determined via modified blackbody fits and via radiative transfer modelling. Models are constructed to examine how the polarisation angles and fractions depend on potential magnetic field geometries and grain alignment. POL-2 data show clear changes in the magnetic field orientation. The filament has a peak column density of N(H2)~7 10^22 cm-2, a minimum dust temperature of T~12 K, and a mass of some 4300Msun for the area N(H2)> 5 10^21 cm-2. The estimated average value of the dust opacity spectral index is beta ~ 1.9. The ratio of sub-millimetre and J band optical depths is tau(250 um)/tau(J) ~ 2.5 10^-3, more than four times the typical values for diffuse medium. The polarisation fraction decreases as a function of column density to p ~ 1% in the central filament. Because of noise, the observed decrease of p(N) is significant only at N(H2)>2 10^22 cm-2. The observations suggest that the grain alignment is not constant. Although the data can be explained with a complete loss of alignment at densities above ~ 10^4 cm-3 or using the predictions of radiative torques alignment, the uncertainty of the field geometry and the spatial filtering of the SCUBA-2 data prevent strong conclusions. G035.39-00.33 shows strong signs of dust evolution and the low polarisation fraction is suggestive of a loss of polarised emission from its densest parts.



rate research

Read More

124 - I. Jimenez-Serra 2014
Some theories of dense molecular cloud formation involve dynamical environments driven by converging atomic flows or collisions between preexisting molecular clouds. The determination of the dynamics and physical conditions of the gas in clouds at the early stages of their evolution is essential to establish the dynamical imprints of such collisions, and to infer the processes involved in their formation. We present multi-transition 13CO and C18O maps toward the IRDC G035.39-00.33, believed to be at the earliest stages of evolution. The 13CO and C18O gas is distributed in three filaments (Filaments 1, 2 and 3), where the most massive cores are preferentially found at the intersecting regions between them. The filaments have a similar kinematic structure with smooth velocity gradients of ~0.4-0.8 km s-1 pc-1. Several scenarios are proposed to explain these gradients, including cloud rotation, gas accretion along the filaments, global gravitational collapse, and unresolved sub-filament structures. These results are complemented by HCO+, HNC, H13CO+ and HN13C single-pointing data to search for gas infall signatures. The 13CO and C18O gas motions are supersonic across G035.39-00.33, with the emission showing broader linewidths toward the edges of the IRDC. This could be due to energy dissipation at the densest regions in the cloud. The average H2 densities are ~5000-7000 cm-3, with Filaments 2 and 3 being denser and more massive than Filament 1. The C18O data unveils three regions with high CO depletion factors (f_D~5-12), similar to those found in massive starless cores.
Magnetic field is one of the key agents that play a crucial role in shaping molecular clouds and regulating star formation, yet the complete information on the magnetic field is not well constrained due to the limitations in observations. We study the magnetic field in the massive infrared dark cloud G035.39-00.33 from dust continuum polarization observations at 850 $micron$ with SCUBA-2/POL-2 at JCMT. The magnetic field tends to be perpendicular to the densest part of the main filament (F$_{M}$), whereas it has a less defined relative orientation in the rest of the structure, where it tends to be parallel to some diffuse regions. A mean plane-of-the-sky magnetic field strength of $sim$50 $mu$G for F$_{M}$ is obtained using Davis-Chandrasekhar-Fermi method. Based on $^{13}$CO (1-0) line observations, we suggest a formation scenario of F$_{M}$ due to large-scale ($sim$10 pc) cloud-cloud collision. Using additional NH$_3$ line data, we estimate that F$_{M}$ will be gravitationally unstable if it is only supported by thermal pressure and turbulence. The northern part of F$_{M}$, however, can be stabilized by a modest additional support from the local magnetic field. The middle and southern parts of F$_{M}$ are likely unstable even if the magnetic field support is taken into account. We claim that the clumps in F$_{M}$ may be supported by turbulence and magnetic fields against gravitational collapse. Finally, we identified for the first time a massive ($sim$200 M$_{sun}$), collapsing starless clump candidate, c8, in G035.39-00.33. The magnetic field surrounding c8 is likely pinched, hinting at an accretion flow along the filament.
The filament IRDC G035.39--00.33 in the W48 molecular complex is one of the darkest infrared clouds observed by textit{Spitzer}. It has been observed by the PACS (70 and 160,$micron$) and SPIRE (250, 350, and 500,$micron$) cameras of the textit{Herschel} Space Observatory as part of the W48 molecular cloud complex in the framework of the HOBYS key programme. The observations reveal a sample of 28 compact sources (deconvolved FWHM sizes $<$0.3 pc) complete down to $sim$$5 msun$ in G035.39--00.33 and its surroundings. Among them, 13 compact sources are massive dense cores with masses $>$$20 msun$. The cloud characteristics we derive from the analysis of their spectral energy distributions are masses of $20-50 msun$, sizes of 0.1--0.2 pc, and average densities of $2-20 times 10^{5} cmc$, which make these massive dense cores excellent candidates to form intermediate- to high-mass stars. Most of the massive dense cores are located inside the G035.39--00.33 ridge and host IR-quiet high-mass protostars. The large number of protostars found in this filament suggests that we are witnessing a mini-burst of star formation with an efficiency of $sim$15% and a rate density of $sim$$40 msun,$yr$^{-1},$kpc$^{-2}$ within $sim$8 pc$^2$, a large area covering the full ridge. Part of the extended SiO emission observed towards G035.39--00.33 is not associated with obvious protostars and may originate from low-velocity shocks within converging flows, as advocated by previous studies.
We present a model for the diffuse interstellar dust that explains the observed wavelength-dependence of extinction, emission, linear and circular polarisation of light. The model is set-up with a small number of parameters. It consists of a mixture of amorphous carbon and silicate grains with sizes from the molecular domain of 0.5 up to about 500nm. Dust grains with radii larger than 6nm are spheroids. Spheroidal dust particles have a factor 1.5 - 3 larger absorption cross section in the far IR than spherical grains of the same volume. Mass estimates derived from submillimeter observations that ignore this effect are overestimated by the same amount. In the presence of a magnetic field, spheroids may be partly aligned and polarise light. We find that polarisation spectra help to determine the upper particle radius of the otherwise rather unconstrained dust size distribution. Stochastically heated small grains of graphite, silicates and polycyclic aromatic hydrocarbons (PAHs) are included. We tabulate parameters for PAH emission bands in various environments. They show a trend with the hardness of the radiation field that can be explained by the ionisation state or hydrogenation coverage of the molecules. For each dust component its relative weight is specified, so that absolute element abundances are not direct input parameters. The model is confronted with the average properties of the Milky Way, which seems to represent dust in the solar neighbourhood. It is then applied to four specific sight lines including the reflection nebula NGC2023. For these sight lines, we present linear and circular spectro-polarimetric observations obtained with FORS/VLT. Using prolate rather than oblate grains gives a better fit to observed spectra; the axial ratio of the spheroids is typically two and aligned silicates are the dominant contributor to the polarisation.
We present deep observations at 450 um and 850 um in the Extended Groth Strip field taken with the SCUBA-2 camera mounted on the James Clerk Maxwell Telescope as part of the deep SCUBA-2 Cosmology Legacy Survey (S2CLS), achieving a central instrumental depth of $sigma_{450}=1.2$ mJy/beam and $sigma_{850}=0.2$ mJy/beam. We detect 57 sources at 450 um and 90 at 850 um with S/N > 3.5 over ~70 sq. arcmin. From these detections we derive the number counts at flux densities $S_{450}>4.0$ mJy and $S_{850}>0.9$ mJy, which represent the deepest number counts at these wavelengths derived using directly extracted sources from only blank-field observations with a single-dish telescope. Our measurements smoothly connect the gap between previous shallower blank-field single-dish observations and deep interferometric ALMA results. We estimate the contribution of our SCUBA-2 detected galaxies to the cosmic infrared background (CIB), as well as the contribution of 24 um-selected galaxies through a stacking technique, which add a total of $0.26pm0.03$ and $0.07pm0.01$ MJy/sr, at 450 um and 850 um, respectively. These surface brightnesses correspond to $60pm20$ and $50pm20$ per cent of the total CIB measurements, where the errors are dominated by those of the total CIB. Using the photometric redshifts of the 24 um-selected sample and the redshift distributions of the submillimetre galaxies, we find that the redshift distribution of the recovered CIB is different at each wavelength, with a peak at $zsim1$ for 450 um and at $zsim2$ for 850um, consistent with previous observations and theoretical models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا