Do you want to publish a course? Click here

Enhanced perpendicular magnetocrystalline anisotropy energy in an artificial magnetic material with bulk spin-momentum coupling

146   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We systematically investigate the perpendicular magnetocrystalline anisotropy (MCA) in Co$-$Pt/Pd-based multilayers. Our magnetic measurement data shows that the asymmetric Co/Pd/Pt multilayer has a significantly larger perpendicular magnetic anisotropy (PMA) energy compared to the symmetric Co/Pt and Co/Pd multilayer samples. We further support this experiment by first principles calculations on the CoPt$_2$, CoPd$_2$, and CoPtPd, which are composite bulk materials that consist of three atomic layers in a unit cell, Pt/Co/Pt, Pd/Co/Pd, Pt/Co/Pd, respectively. By estimating the contribution of bulk spin-momentum coupling to the MCA energy, we show that the CoPtPd multilayer with the symmetry breaking has a significantly larger perpendicular magnetic anisotropy (PMA) energy than the other multilayers that are otherwise similar but lack the symmetry breaking. This observation thus provides an evidence of the PMA enhancement due to the structural inversion symmetry breaking and highlights the asymmetric CoPtPd as the first artificial magnetic material with bulk spin-momentum coupling, which opens a new pathway toward the design of materials with strong PMA.



rate research

Read More

High perpendicular magnetic anisotropy (PMA), a property needed for nanoscale spintronic applications, is rare in oxide conductors. We report the observation of a PMA up to 0.23 MJ/m3 in modestly strained epitaxial NiCo2O4 (NCO) films which are room-temperature ferrimagnetic conductors. Spin-lattice coupling manifested as magnetoelastic effect was found as the origin of the PMA. The in-plane xx-yy states of Co on tetrahedral sites play crucial role in the magnetic anisotropy and spin-lattice coupling with an energy scale of 1 meV/f.u. The elucidation of the microscopic origin paves a way for engineering oxide conductors for PMA using metal/oxygen hybridizations.
The origin of large perpendicular magneto-crystalline anisotropy (PMCA) in Fe/MgO (001) is revealed by comparing Fe layers with and without the MgO. Although Fe-O $p$-$d$ hybridization is weakly present, it cannot be the main origin of the large PMCA as claimed in previous study. Instead, perfect epitaxy of Fe on the MgO is more important to achieve such large PMCA. As an evidence, we show that the surface layer in a clean free-standing Fe (001) dominantly contributes to $E_{MCA}$, while in the Fe/MgO, those by the surface and the interface Fe layers contribute almost equally. The presence of MgO does not change positive contribution from $langle xz|ell_Z|yzrangle$, whereas it reduces negative contribution from $langle z^2|ell_X|yzrangle$ and $langle xy|ell_X|xz,yzrangle$.
The magneto-crystalline anisotropy (MCA) of (Ga,Mn)As films has been studied on the basis of ab-initio electronic structure theory by performing magnetic torque calculations. An appreciable contribution to the in-plane uniaxial anisotropy can be attributed to an extended region adjacent to the surface. Calculations of the exchange tensor allow to ascribe a significant part to the MCA to the exchange anisotropy, caused either by a tetragonal distortion of the lattice or by the presence of the surface or interface.
Domain structures in CoFeB-MgO thin films with a perpendicular easy magnetization axis were observed by magneto-optic Kerr-effect microscopy at various temperatures. The domain wall surface energy was obtained by analyzing the spatial period of the stripe domains and fitting established domain models to the period. In combination with SQUID measurements of magnetization and anisotropy energy, this leads to an estimate of the exchange stiffness and domain wall width in these films. These parameters are essential for determining whether domain walls will form in patterned structures and devices made of such materials.
Non-coplanar spin textures with scalar spin chirality can generate effective magnetic field that deflects the motion of charge carriers, resulting in topological Hall effect (THE), a powerful probe of the ground state and low-energy excitations of correlated systems. However, spin chirality fluctuation in two-dimensional ferromagnets with perpendicular anisotropy has not been considered in prior studies. Herein, we report direct evidence of universal spin chirality fluctuation by probing the THE above the transition temperatures in two different ferromagnetic ultra-thin films, SrRuO$_3$ and V doped Sb$_2$Te$_3$. The temperature, magnetic field, thickness, and carrier type dependences of the THE signal, along with our Monte-Carlo simulations, unambiguously demonstrate that the spin chirality fluctuation is a universal phenomenon in two-dimensional Ising ferromagnets. Our discovery opens a new paradigm of exploring the spin chirality with topological Hall transport in two-dimensional magnets and beyond
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا