Do you want to publish a course? Click here

Interleaved Atom Interferometry for High Sensitivity Inertial Measurements

122   0   0.0 ( 0 )
 Added by Remi Geiger
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cold-atom inertial sensors target several applications in navigation, geoscience and tests of fundamental physics. Reaching high sampling rates and high inertial sensitivities, obtained with long interrogation times, represents a challenge for these applications. We report on the interleaved operation of a cold-atom gyroscope, where 3 atomic clouds are interrogated simultaneously in an atom interferometer featuring a 3.75 Hz sampling rate and an interrogation time of 801 ms. Interleaving improves the inertial sensitivity by efficiently averaging vibration noise, and allows us to perform dynamic rotation measurements in a so-far unexplored range. We demonstrate a stability of $3times 10^{-10}$ rad.s$^{-1}$, which competes with the best stability levels obtained with fiber-optics gyroscopes. Our work validates interleaving as a key concept for future atom-interferometry sensors probing time-varying signals, as in on-board navigation and gravity-gradiometry, searches for dark matter, or gravitational wave detection.



rate research

Read More

The research on cold-atom interferometers gathers a large community of about 50 groups worldwide both in the academic and now in the industrial sectors. The interest in this sub-field of quantum sensing and metrology lies in the large panel of possible applications of cold-atom sensors for measuring inertial and gravitational signals with a high level of stability and accuracy. This review presents the evolution of the field over the last 30 years and focuses on the acceleration of the research effort in the last 10 years. The article describes the physics principle of cold-atom gravito-inertial sensors as well as the main parts of hardware and the expertise required when starting the design of such sensors. It then reviews the progress in the development of instruments measuring gravitational and inertial signals, with a highlight on the limitations to the performances of the sensors, on their applications, and on the latest directions of research.
113 - N. Mielec , M. Altorio , R. Sapam 2018
The uniformity of the intensity and phase of laser beams is crucial to high-performance atom interferometers. Inhomogeneities in the laser intensity profile cause contrast reductions and systematic effects in interferometers operated with atom sources at micro-Kelvin temperatures, and detrimental diffraction phase shifts in interferometers using large momentum transfer beam splitters. We report on the implementation of a so-called top-hat laser beam in a long-interrogation-time cold-atom interferometer to overcome the issue of the inhomogeneous laser intensity encountered when using Gaussian laser beams. We characterize the intensity and relative phase profiles of the top-hat beam and demonstrate its gain in atom-optics efficiency over a Gaussian beam, in agreement with numerical simulations. We discuss the application of top-hat beams to improve the performance of different architectures of atom interferometers.
136 - I. Dutta , D. Savoie , B. Fang 2016
We report the operation of a cold-atom inertial sensor which continuously captures the rotation signal. Using a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer (AI) enables us to eliminate the dead times. We show that such continuous operation improves the short-term sensitivity of AIs, and demonstrate a rotation sensitivity of $100 text{nrad.s}^{-1}.text{Hz}^{-1/2}$ in a cold-atom gyroscope of $11 text{cm}^2$ Sagnac area. We also demonstrate a rotation stability of $1 text{nrad.s}^{-1}$ at $10^4$ s of integration time, which establishes the record for atomic gyroscopes. The continuous operation of cold-atom inertial sensors will enable to benefit from the full sensitivity potential of large area AIs, determined by the quantum noise limit.
We have developed an atom interferometer providing a full inertial base. This device uses two counter-propagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are successively applied in three orthogonal directions leading to the measurement of the three axis of rotation and acceleration. In this purpose, we introduce a new atom gyroscope using a butterfly geometry. We discuss the present sensitivity and the possible improvements.
We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests. The horizontal configuration is superior for maximizing the inertial signal in the atom interferometer from a nearby proof mass. In our device, we have suppressed spurious noise associated with the horizonal configuration to achieve a differential acceleration sensitivity of 4.2$times10^{-9}g/sqrt{Hz}$ over a 70 cm baseline or 3.0$times10^{-9}g/sqrt{Hz}$ inferred per accelerometer. Using the performance of this instrument, we characterize the results of possible future gravitational tests. We complete a proof-of-concept measurement of the gravitational constant with a precision of 3$times10^{-4}$ that is competitive with the present limit of 1.2$times10^{-4}$ using other techniques. From this measurement, we provide a statistical constraint on a Yukawa-type fifth force at 8$times$10$^{-3}$ near the poorly known length scale of 10 cm. Limits approaching 10$^{-5}$ appear feasible. We discuss improvements that can enable uncertainties falling well below 10$^{-5}$ for both experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا