Do you want to publish a course? Click here

Three-Dimensional Fermi-Surface and Electron-Phonon Coupling in Semimetallic 1T-TiTe2 studied by Angle-Resolved Photoemission Spectroscopy

138   0   0.0 ( 0 )
 Added by Jian-Qiao Meng
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an investigation on electronic structure of 1T-TiTe2 material via high-resolution angle-resolved photoemission spectroscopy (ARPES), utilizing tunable photon energy excitations. The typical semimetal-like electronic structure is observed and examined, where multiple hole pockets related to Te 5p bands and one electron pockets related to Ti 3d band are populated. The obtained results reveals i) a pronounced three-dimensional (3D) electronic structure of 1T-TiTe2 with typical semi-metallic features, for both the Ti 3d and the Te 5p states; ii) multiple Fermi surface (FS) sheets and complex band structure; and iii) an obvious kink in dispersion at an energy of about 18 meV below the Fermi energy, the first experimental observation of a kink structure in 1T-TiTe2, which may originate from electron-phonon coupling. These important and significant findings can help us to gain an in-depth understanding of the 3D electronic structure of semimetallic 1T- TiTe2.



rate research

Read More

High resolution laser-based angle-resolved photoemission measurements have been carried out on Sb(111) single crystal. Two kinds of Fermi surface sheets are observed that are derived from the topological surface states: one small hexagonal electron-like Fermi pocket around $Gamma$ point and the other six elongated lobes of hole-like Fermi pockets around the electron pocket. Clear Rashba-type band splitting due to the strong spin-orbit coupling is observed that is anisotropic in the momentum space. Our super-high-resolution ARPES measurements reveal no obvious kink in the surface band dispersions indicating a weak electron-phonon interaction in the surface states. In particular, the electron scattering rate for these topological surface states is nearly a constant over a large energy window near the Fermi level that is unusual in terms of the conventional picture.
The localized-to-itinerant transition of f electrons lies at the heart of heavy-fermion physics, but has only been directly observed in single-layer Ce-based materials. Here, we report a comprehensive study on the electronic structure and nature of the Ce 4f electrons in the heavy-fermion superconductor Ce2PdIn8, a typical n=2 CenMmIn3n+2m compound, using high-resolution and 4d-4f resonance photoemission spectroscopies. The electronic structure of this material has been studied over a wide temperature range, and hybridization between f and conduction electrons can be clearly observed to form a Kondo resonance near the Fermi level at low temperatures. The characteristic temperature of the localized-to-itinerant transition is around 120K, which is much higher than its coherence temperature Tcoh~30K.
387 - T. Yoshida , S. Ideta , I. Nishi 2012
We have performed an angle-resolved photoemission study of the hole-overdoped iron pnictide superconductor KFe2As2, which shows a low Tc of ~4 K. Most of the observed Fermi surfaces show nearly two-dimensional shapes, while a band near the Fermi level shows a strong dispersion along the kz direction and forms a small three-dimensional hole pocket centered at the Z point, as predicted by band-structure calculation. However, hole Fermi surfaces of yz and zx orbital character centered at the Gamma point of the two-dimensional Brillouin zone are smaller than those predicted by the calculation while the other hole Fermi surfaces of xy orbital character is much larger. Clover-shaped hole Fermi surfaces around the corner of the 2D BZ are also larger than those predicted by the calculation. These observations are consistent with the de Haas-van Alphen measurement and indicate orbital-dependent electron correlation effects. The effective masses of the energy bands show moderate to strong enhancement, partly due to electron correlation and partly due to energy shifts from the calculated band structure.
High-resolution angle-resolved photoemission spectroscopy and ultrafast optical pump-probe spectroscopy were used to study semimetallic 1T - TiTe2 quasiparticle dispersion and dynamics. A kink and a flat band, having the same energy scale and temperature-dependent behaviors along the G-M direction, were detected. Both manifested at low temperatures but blurred as temperature increased. The kink was formed by an electron-phonon coupling. And the localized flat band might be closely related to an electron-phonon coupling. Ultrafast optical spectroscopy identified multiple distinct time scales in the 10-300 K range. Quantitative analysis of the fastest decay process evidenced a significant lifetime temperature dependence at high temperatures, while this starts to change slowly below ~ 100 K where an anomalous Hall coefficient occurred. At low temperature, a coherent A1g phonon mode with a frequency of ~ 4.36 THz was extracted. Frequency temperature dependence suggests that phonon hardening occurs as temperature falls and anharmonic effects can explain it. Frequency fluence dependence indicates that the phonons soften as fluence increases.
100 - Q. Yao , Y. P. Du , X. J. Yang 2016
PtBi2 with a layered trigonal crystal structure was recently reported to exhibit an unconventional large linear magnetoresistance, while the mechanism involved is still elusive. Using high resolution angle-resolved photoemission spectroscopy, we present a systematic study on its bulk and surface electronic structure. Through careful comparison with first-principle calculations, our experiment distinguishes the low-lying bulk bands from entangled surface states, allowing the estimation of the real stoichiometry of samples. We find significant electron doping in PtBi2, implying a substantial Bi deficiency induced disorder therein. We discover a Dirac-cone-like surface state on the boundary of the Brillouin zone, which is identified as an accidental Dirac band without topological protection. Our findings exclude quantum-limit-induced linear band dispersion as the cause of the unconventional large linear magnetoresistance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا