We revisit the famous Coleman-de Luccia formalism for decay of false vacuum in gravitational theory. Since the corresponding wave function is time-independent we argue that its instantons interpretation as the decay rate probability is problematic. We instead propose that such phenomenon can better be described by the Wheeler-de Witts wave function. To do so, the Hamilton-Jacobi formalism is employed in the WKB approximation. The scalar and gravitational fields can then be treated as a two-dimensional effective metric. For a particular case of dS-to-dS tunneling, we calculated the wave function and found that it depends only on the potential of the false, and not on the true, vacuum; reminiscent of, though in totally different formalism with, the Hawking-Moss result. In general, this alternative approach might have significant impact on the study of very early universe and quantum cosmology.