No Arabic abstract
Dropout has proven to be an effective technique for regularization and preventing the co-adaptation of neurons in deep neural networks (DNN). It randomly drops units with a probability $p$ during the training stage of DNN. Dropout also provides a way of approximately combining exponentially many different neural network architectures efficiently. In this work, we add a diversification strategy into dropout, which aims at generating more different neural network architectures in a proper times of iterations. The dropped units in last forward propagation will be marked. Then the selected units for dropping in the current FP will be kept if they have been marked in the last forward propagation. We only mark the units from the last forward propagation. We call this new technique Tabu Dropout. Tabu Dropout has no extra parameters compared with the standard Dropout and also it is computationally cheap. The experiments conducted on MNIST, Fashion-MNIST datasets show that Tabu Dropout improves the performance of the standard dropout.
Approximate inference in deep Bayesian networks exhibits a dilemma of how to yield high fidelity posterior approximations while maintaining computational efficiency and scalability. We tackle this challenge by introducing a novel variational structured approximation inspired by the Bayesian interpretation of Dropout regularization. Concretely, we focus on the inflexibility of the factorized structure in Dropout posterior and then propose an improved method called Variational Structured Dropout (VSD). VSD employs an orthogonal transformation to learn a structured representation on the variational noise and consequently induces statistical dependencies in the approximate posterior. Theoretically, VSD successfully addresses the pathologies of previous Variational Dropout methods and thus offers a standard Bayesian justification. We further show that VSD induces an adaptive regularization term with several desirable properties which contribute to better generalization. Finally, we conduct extensive experiments on standard benchmarks to demonstrate the effectiveness of VSD over state-of-the-art variational methods on predictive accuracy, uncertainty estimation, and out-of-distribution detection.
In this work, we propose a novel technique to boost training efficiency of a neural network. Our work is based on an excellent idea that whitening the inputs of neural networks can achieve a fast convergence speed. Given the well-known fact that independent components must be whitened, we introduce a novel Independent-Component (IC) layer before each weight layer, whose inputs would be made more independent. However, determining independent components is a computationally intensive task. To overcome this challenge, we propose to implement an IC layer by combining two popular techniques, Batch Normalization and Dropout, in a new manner that we can rigorously prove that Dropout can quadratically reduce the mutual information and linearly reduce the correlation between any pair of neurons with respect to the dropout layer parameter $p$. As demonstrated experimentally, the IC layer consistently outperforms the baseline approaches with more stable training process, faster convergence speed and better convergence limit on CIFAR10/100 and ILSVRC2012 datasets. The implementation of our IC layer makes us rethink the common practices in the design of neural networks. For example, we should not place Batch Normalization before ReLU since the non-negative responses of ReLU will make the weight layer updated in a suboptimal way, and we can achieve better performance by combining Batch Normalization and Dropout together as an IC layer.
Overfitting is one of the most critical challenges in deep neural networks, and there are various types of regularization methods to improve generalization performance. Injecting noises to hidden units during training, e.g., dropout, is known as a successful regularizer, but it is still not clear enough why such training techniques work well in practice and how we can maximize their benefit in the presence of two conflicting objectives---optimizing to true data distribution and preventing overfitting by regularization. This paper addresses the above issues by 1) interpreting that the conventional training methods with regularization by noise injection optimize the lower bound of the true objective and 2) proposing a technique to achieve a tighter lower bound using multiple noise samples per training example in a stochastic gradient descent iteration. We demonstrate the effectiveness of our idea in several computer vision applications.
Studies on generalization performance of machine learning algorithms under the scope of information theory suggest that compressed representations can guarantee good generalization, inspiring many compression-based regularization methods. In this paper, we introduce REVE, a new regularization scheme. Noting that compressing the representation can be sub-optimal, our first contribution is to identify a variable that is directly responsible for the final prediction. Our method aims at compressing the class conditioned entropy of this latter variable. Second, we introduce a variational upper bound on this conditional entropy term. Finally, we propose a scheme to instantiate a tractable loss that is integrated within the training procedure of the neural network and demonstrate its efficiency on different neural networks and datasets.
In recent years, the mean field theory has been applied to the study of neural networks and has achieved a great deal of success. The theory has been applied to various neural network structures, including CNNs, RNNs, Residual networks, and Batch normalization. Inevitably, recent work has also covered the use of dropout. The mean field theory shows that the existence of depth scales that limit the maximum depth of signal propagation and gradient backpropagation. However, the gradient backpropagation is derived under the gradient independence assumption that weights used during feed forward are drawn independently from the ones used in backpropagation. This is not how neural networks are trained in a real setting. Instead, the same weights used in a feed-forward step needs to be carried over to its corresponding backpropagation. Using this realistic condition, we perform theoretical computation on linear dropout networks and a series of experiments on dropout networks. Our empirical results show an interesting phenomenon that the length gradients can backpropagate for a single input and a pair of inputs are governed by the same depth scale. Besides, we study the relationship between variance and mean of statistical metrics of the gradient and shown an emergence of universality. Finally, we investigate the maximum trainable length for deep dropout networks through a series of experiments using MNIST and CIFAR10 and provide a more precise empirical formula that describes the trainable length than original work.