No Arabic abstract
We present detailed multi-wavelength observations of GRB 161219B at $z=0.1475$, spanning the radio to X-ray regimes, and the first ALMA light curve of a GRB afterglow. The cm- and mm-band observations before $8.5$ d require emission in excess of that produced by the afterglow forward shock (FS). These data are consistent with radiation from a refreshed reverse shock (RS) produced by the injection of energy into the FS, signatures of which are also present in the X-ray and optical light curves. We infer a constant-density circumburst environment with an extremely low density, $n_0approx 3times10^{-4}$ cm$^{-3}$ and show that this is a characteristic of all strong RS detections to date. The VLA observations exhibit unexpected rapid variability on $sim$ minute timescales, indicative of strong interstellar scintillation. The X-ray, ALMA, and VLA observations together constrain the jet break time, $t_{rm jet}approx32$ day, yielding a wide jet opening angle of $theta_{rm jet}approx13^{circ}$, implying beaming corrected $gamma$-ray and kinetic energies of $E_{gamma}approx4.9times10^{48}$ erg and $E_{rm K}approx1.3times10^{50}$ erg, respectively. Comparing the RS and FS emission, we show that the ejecta are only weakly magnetized, with relative magnetization, $R_{rm B}approx1$, compared to the FS. These direct, multi-frequency measurements of a refreshed RS spanning the optical to radio bands highlight the impact of radio and millimeter data in probing the production and nature of GRB jets.
Despite the pre-Swift expectation that bright optical flashes from reverse shocks would be prevalent in early-time afterglow emission, rapid response observations show this not to be the case. Although very bright at early times, some GRBs such as GRB 061007 and GRB 060418, lack the short-lived optical flash from the reverse shock within minutes after the GRB. In contrast, other optical afterglows, such as those of GRB 990123, GRB 021211, GRB 060111B, GRB 060117, GRB 061126, and recently GRB 080319B, show a steep-to-flat transition within first 10^3 s typical of a rapidly evolving reverse + forward shock combination. We review the presence and absence of the reverse shock components in optical afterglows and discuss the implications for the standard model and the magnetization of the fireball. We show that the previously predicted optical flashes are likely to occur at lower wavelengths, perhaps as low as radio wavelengths and, by using the case of GRB 061126 we show that the magnetic energy density in the ejecta, expressed as a fraction of the equipartion value, is a key physical parameter.
We present a detailed study of the spectral and temporal properties of the X-ray and optical emission of GRB050713a up to 0.5 day after the main GRB event. The X-ray light curve exhibits large amplitude variations with several rebrightenings superposed on the underlying three-segment broken powerlaw that is often seen in Swift GRBs. Our time-resolved spectral analysis supports the interpretation of a long-lived central engine, with rebrightenings consistent with energy injection in refreshed shocks as slower shells generated in the central engine prompt phase catch up with the afterglow shock at later times. Our sparsely-sampled light curve of the optical afterglow can be fitted with a single power law without large flares. The optical decay index appears flatter than the X-ray one, especially at later times.
We report our identification of the optical afterglow and host galaxy of the short-duration gamma-ray burst GRB 160821B. The spectroscopic redshift of the host is $z=0.162$, making it one of the lowest redshift sGRBs identified by Swift. Our intensive follow-up campaign using a range of ground-based facilities as well as HST, XMM and Swift, shows evidence for a late-time excess of optical and near-infrared emission in addition to a complex afterglow. The afterglow light-curve at X-ray frequencies reveals a narrow jet, $theta_jsim1.9^{+0.10}_{-0.03}$ deg, that is refreshed at $>1$ day post-burst by a slower outflow with significantly more energy than the initial outflow that produced the main GRB. Observations of the 5 GHz radio afterglow shows a reverse shock into a mildly magnetised shell. The optical and near-infrared excess is fainter than AT2017gfo associated with GW170817, and is well explained by a kilonova with dynamic ejecta mass $M_{rm dyn}=(1.0pm0.6)times10^{-3}$ M$_{odot}$ and a secular (postmerger) ejecta mass with $M_{rm pm}=(1.0pm0.6)times10^{-2}$ M$_odot$, consistent with a binary neutron star merger resulting in a short-lived massive neutron star. This optical and near-infrared dataset provides the best-sampled kilonova light-curve without a gravitational wave trigger to date.
We present ALMA 97.5 GHz total intensity and linear polarization observations of the mm-band afterglow of GRB 190114C spanning 2.2 to 5.2 hours after the burst. We detect linear polarization at the $approx 5,sigma$ level, decreasing from $Pi=(0.87pm0.13)%$ to $(0.60pm0.19)%$, and evolving in polarization position angle from $(10pm5)^circ$ to $(-44pm12)^circ$ during the course of the observations. This represents the first detection of polarized millimeter emission in a $gamma$-ray burst. We show that the optical and X-ray observations between $0.03$ days and $sim0.3$ days are consistent with a fast cooling forward shock expanding into a wind environment. However, the optical observations at $lesssim0.03$ days, as well as the radio and millimeter observations arise from a separate component, which we interpret as emission from the reverse-shocked ejecta. Using the measured linear polarization, we constrain the coherence scale of tangled magnetic fields in the ejecta to an angular size of $theta_{rm B} approx10^{-3}$ radian, while the rotation of the polarization angle rules out the presence of large scale, ordered axisymmetric magnetic fields, and in particular a large scale toroidal field, in the jet.
We present a bolometric light curve model of Type IIn supernovae powered by supernova ejecta colliding with a circumstellar medium. We estimate the conversion efficiency of the ejectas kinetic energy to radiation at the reverse and forward shocks and find that a large density contrast makes a difference in the efficiency. The emission from the reverse shock can maintain high efficiency for a long time, and becomes important at the late phase of the light curve. We first construct a semi-analytical model that is applicable to the late phase of the light curve when the diffusion time of photons in the shocked region becomes negligible. We further develop radiation transfer simulations that incorporate these physical processes into the light curve. The numerical calculations predict light curves at early phases, which are testable by present and future short-cadence surveys. We compare our model with the bolometric light curve constructed from observations for a type IIn supernova 2005ip. Due to the reduced efficiency at the forward shock, we find from our model that the mass-loss rate of the progenitor star was $approx 1times 10^{-2} {rm M_odot yr^{-1}}$ for a wind velocity of $100 {rm km s^{-1}}$, an order of magnitude higher compared to previous work that used simple assumptions of the efficiency. This highlights the importance of taking these two components into account when extracting the physical parameters from observations.