Reconstruction of a Photonic Qubit State with Reinforcement Learning


Abstract in English

An experiment is performed to reconstruct an unknown photonic quantum state with a limited amount of copies. A semi-quantum reinforcement learning approach is employed to adapt one qubit state, an agent, to an unknown quantum state, an environment, by successive single-shot measurements and feedback, in order to achieve maximum overlap. The experimental learning device herein, composed of a quantum photonics setup, can adjust the corresponding parameters to rotate the agent system based on the measurement outcomes 0 or 1 in the environment (i.e., reward/punishment signals). The results show that, when assisted by such a quantum machine learning technique, fidelities of the deterministic single-photon agent states can achieve over 88% under a proper reward/punishment ratio within 50 iterations. This protocol offers a tool for reconstructing an unknown quantum state when only limited copies are provided, and can also be extended to higher dimensions, multipartite, and mixed quantum state scenarios.

Download