No Arabic abstract
We consider a five-dimensional Einstein--Cartan spacetime upon which Dirac spinor fields can be defined. Dirac spinor fields in five and four dimensions share many features, like the fact that both are described by four-component spinor fields, but they are also characterized by strong differences, like the fact that in five dimensions we do not have the possibility to project on left-handed and right-handed chiral parts unlike what happens in the four-dimensional instance: we conduct a polar decomposition of the spinorial fields, so to highlight all similarities and discrepancies. As an application of spinor fields in five dimensions, we study Bianchi-I spacetimes, verifying whether the Dirac fields in five dimensions can give rise to inflation or dark-energy dominated cosmological eras or not.
We study Dirac spinors in Bianchi type-I cosmological models, within the framework of torsional $f(R)$-gravity. We find four types of results: the resulting dynamic behavior of the universe depends on the particular choice of function $f(R)$; some $f(R)$ models do not isotropize and have no Einstein limit, so that they have no physical significance, whereas for other $f(R)$ models isotropization and Einsteinization occur, and so they are physically acceptable, suggesting that phenomenological arguments may select $f(R)$ models that are physically meaningful; the singularity problem can be avoided, due to the presence of torsion; the general conservation laws holding for $f(R)$-gravity with torsion ensure the preservation of the Hamiltonian constraint, so proving that the initial value problem is well-formulated for these models.
Some cosmological solutions of massive strings are obtained in Bianchi I space-time following the techniques used by Letelier and Stachel. A class of solutions corresponds to string cosmology associated with/without a magnetic field and the other class consists of pure massive strings, obeying the Takabayashi equation of state.
Scalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic Equation of State (EoS) with barotropic index $gamma$ for Locally Rotationally Symmetric (LRS) Bianchi III metric and open Friedmann-Lema^itre-Robertson-Walker (FLRW) metric are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averag
Scalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic Equation of State (EoS) with barotropic index $gamma$ for the Locally Rotationally Symmetric (LRS) Bianchi I and flat Friedmann-Lema^itre-Robertson-Walker (FLRW) metrics are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averag
Curvature collineations of Bianchi type IV space-times are investigated using the rank of the 6X6 Riemann matrix and direct integration technique. From the above study it follows that the Bianchi type IV space-times possesses only one case when it admits proper curvature collineations. It is shown that proper curvature collineations form an infinite dimensional vector space.